設函數(shù).
(1)若時,求處的切線方程;
(2)當時,,求的取值范圍.
(1);(2)的取值范圍是.

試題分析:本題考查函數(shù)與導數(shù)及運用導數(shù)求單調(diào)區(qū)間、最值等數(shù)學知識和方法,突出考查綜合運用數(shù)學知識和方法分析問題解決問題的能力.第一問,將代入得到解析式,對求導,將代入得到切線的斜率,再將代入中得到切點的縱坐標,最后利用點斜式方程直接寫出切線方程;第二問,將恒成立問題轉(zhuǎn)化成函數(shù)的最小值問題,對求導,判斷范圍內(nèi)的函數(shù)的單調(diào)性,判斷出當時,,所以.
試題解析:(1)當,
,,,
故所求切線方程為:
化簡得:.(5分)
(2) ,,
化簡得:,
,
求導得:.
時,;當時,.
單調(diào)減少,在單調(diào)增加.
時取極小值.
時,.
綜上所述:,即的取值范圍是.(13分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若,直線都不是曲線的切線,求k的取值范圍;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,若函數(shù)在區(qū)間上的最大值為28,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求處的切線方程;
(2)若上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=+ax-lnx(a∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的極值;
(Ⅱ)當a≥2時,討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對任意及任意,∈[1,2],恒有成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點P在曲線上,點Q在曲線上,則|PQ|最小值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)的圖象上任意點處切線的傾斜角為,則的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的導數(shù)為,且滿足關(guān)系式的值等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,若,則x0等于    (     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案