精英家教網 > 高中數學 > 題目詳情

設函數f(x)=tx2+2txt2-1(xR,t>0).

(Ⅰ)求f(x)的最小值h(t);

(Ⅱ)若h(t)<-2tmt∈(0,2)恒成立,求實數m的取值范圍.

答案:
解析:

  解:(Ⅰ)f(x)=tx2+2tx-1=t(x+1)2t2t-1.

  ∵xRt>0,∴h(x)=-t-1.

  (Ⅱ)由(I)可知,h(t)<-2tm,得t2t-1<-2tm

  即mt2t-1=(t)2

  ∴t∈(0,2)時,有-1<t2t-1<5,

  故mt2t-1對t∈(0,2)恒成立,必須m≥5.


練習冊系列答案
相關習題

科目:高中數學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數學 題型:044

已知函數f(x)=(a、b、c∈N),f(2)=2,f(3)<3且f(x)的圖像按向量e=(-1,0)平移后得到的圖像關于原點對稱.

(Ⅰ)求a,b,c的值;

(Ⅱ)設0<|x|<1,0<|t|≤1,

求證:|t+x|+|t-x|<|f(tx+1)|;

(Ⅲ)設x是正實數,

求證:[f(x+1)]n-f(xn+1)≥2n-2.

查看答案和解析>>

科目:高中數學 來源:黃岡新內參·高考(專題)模擬測試卷·數學 題型:044

已知函數f(x)=(a、b、c∈N),f(2)=2,f(3)<3且f(x)的圖像按向量e=(-1,0)平移后得到的圖像關于原點對稱.

(Ⅰ)求a、b、c的值;

(Ⅱ)設0<|x|<1,0<|t|≤1,求證:|t+x|+|t-x|<|f(tx+1)|;

(Ⅲ)設x是正實數,求證:-f(+1)≥-2.

查看答案和解析>>

科目:高中數學 來源:四川眉山市高中2007屆第二次診斷考試、數學(理科) 題型:044

已知關于x的方程2x2-tx-2=0的兩個根為,β(<β),tR,設函數f(x)=

①判斷f(x)在[,β]上的單調性;

②若<m<β,<n<β,證明|f(m)-f(n)|<2|-β|.

查看答案和解析>>

科目:高中數學 來源:四川省內江六中2010屆高三第四次月考、文科數學試卷 題型:044

已知函數f(x)=(a,b,c∈N),且f(2)=2,f(3)<3,且f(x)的圖像按向量=(-1,0)平移后得到的圖像關于原點對稱.

(1)求a,b,c的值;

(2)設0<|x|<1,0<|t|≤1,求證不等式|t+x|-|t-x|<|f(tx+1)|;

(3)已知x>0,n∈N*,求證不等式[f(x+1)]n-f(xn+1)≥2n-2

查看答案和解析>>

科目:高中數學 來源:2013-2014學年湖北武漢市高三2月調研測試理科數學試卷(解析版) 題型:解答題

1)已知函數f(x)ex1tx,?x0R,使f(x0)0,實數t取值范圍

2)證明:ln,其中0ab;

3[x]表示不超過x的最大整數,證明:[ln(1n)][1 ]1[lnn]nN*

 

查看答案和解析>>

同步練習冊答案