(2003•北京)若z∈C,且|z+2-2i|=1,則|z-2-2i|的最小值是( 。
分析:根據(jù)式子|Z+2-2i|=1的幾何意義,表示以(-2,2)為圓心,以1為半徑的圓,|Z-2-2i|的最小值,就是圓上的點到(2,2)距離的最小值,轉(zhuǎn)化為圓心到(2,2)距離與半徑的差.
解答:解:由題意知,|Z+2-2i|=1表示:復(fù)平面上的點到(-2,2)的距離為1的圓,
即以(-2,2)為圓心,以1為半徑的圓,
|Z-2-2i|表示:圓上的點到(2,2)的距離的最小值,
即圓心(-2,2)到(2,2)的距離減去半徑1,
則|2-(-2)|-1=3
故選B.
點評:本題考查復(fù)數(shù)代數(shù)形式有關(guān)式子的幾何意義,關(guān)鍵是把式子轉(zhuǎn)化為幾何意義,考查了轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)若數(shù)列{an}的通項公式是an=
3-n+(-1)n3-n
2
,n=1,2,…
,則
lim
n→∞
(a1+a2+…+an)
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)有三個新興城鎮(zhèn),分別位于A,B,C三點處,且AB=AC=13km,BC=10km.今計劃合建一個中心醫(yī)院,為同時方便三鎮(zhèn),準(zhǔn)備建在BC的垂直平分線上的P點處,(建立坐標(biāo)系如圖)
(Ⅰ)若希望點P到三鎮(zhèn)距離的平方和為最小,點P應(yīng)位于何處?
(Ⅱ)若希望點P到三鎮(zhèn)的最遠(yuǎn)距離為最小,點P應(yīng)位于何處?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請舉一例:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)有三個新興城鎮(zhèn)分別位于A、B、C三點處,且AB=AC=a,BC=2b,今計劃合建一個中心醫(yī)院,為同時方便三鎮(zhèn),準(zhǔn)備建在BC的垂直平分線上的P點處(建立坐標(biāo)系如圖).
(Ⅰ)若希望點P到三鎮(zhèn)距離的平方和最小,則P應(yīng)位于何處?
(Ⅱ)若希望點P到三鎮(zhèn)的最遠(yuǎn)距離為最小,則P應(yīng)位于何處?

查看答案和解析>>

同步練習(xí)冊答案