向量數(shù)學(xué)公式=(cosθ,sinθ),數(shù)學(xué)公式=(數(shù)學(xué)公式,1),則數(shù)學(xué)公式的最大值為


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
B
分析:根據(jù)向量模的公式,算出||=1且||=2,結(jié)合向量的三角形不等式,即可算出當(dāng)cosθ=-,sinθ=-時(shí),的最大值為4.
解答:∵向量=(cosθ,sinθ),=(,1),
∴||==1,||==2
根據(jù)向量的三角形不等式,得≤|2|+||=4
當(dāng)且僅當(dāng)cosθ=-,sinθ=-時(shí),即θ=-+2kπ時(shí),k∈Z
的最大值為4
故選:4
點(diǎn)評(píng):本題求關(guān)于向量、的一個(gè)向量模長(zhǎng)的最大值,著重考查了根據(jù)向量模的公式、平面向量數(shù)量積的坐標(biāo)表示等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=
a
=(cosα,sinα)
,
OC
=
c
=(0,2)
OB
=
b
=(2cosβ,2sinβ)
,其中O為坐標(biāo)原點(diǎn),且0<α<
π
2
<β<π
(1)若
a
⊥(
b
-
a
)
,求β-α的值;
(2)若
OB
OC
=2,
OA
OC
=
3
,求△OAB的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•綿陽(yáng)二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函數(shù)f(x)=|
m
|+
m
n
且最小正周期為π,
(1)求函數(shù),f(x)的最大值,并寫出相應(yīng)的x的取值集合;
(2)在△ABC中角A,B,C所對(duì)的邊分別為a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函數(shù),f(x)=
a
b
-
1
2
其圖象的一條對(duì)稱軸為x=
π
6

(I)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若f(
A
2
)
=1,b=1,S△ABC=
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosωx,cosωx),
b
=(
3
sinωx,cosωx),其中0<ω<2,f(x)=
a
b
+
1
2
,其圖象的一條對(duì)稱軸為x=
π
6

(1)求f(x)的表達(dá)式;
(2)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,S為其面積,若f(
A
2
)=2 , b=2 , S=2
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函數(shù)f(x)=
a
b
-
1
2
,其圖象的一條對(duì)稱軸為x=
π
6

(1)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若f(
A
2
)
=1,b=l,S△ABC=
3
,求BC邊上的中線AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案