設(shè)單調(diào)遞增函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123347560436.gif" style="vertical-align:middle;" />,且對(duì)任意的正實(shí)數(shù)x,y有:
⑴.一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足:其中為數(shù)列的前n項(xiàng)和,求數(shù)列的通項(xiàng)公式;
⑵.在⑴的條件下,是否存在正數(shù)M使下列不等式:

對(duì)一切成立?若存在,求出M的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(1)(2)
⑴、對(duì)任意的正數(shù)均有

, 
是定義在上的單增函數(shù),
當(dāng)時(shí),,
當(dāng)時(shí),
,為等差數(shù)列,,
⑵、假設(shè)存在滿足條件,
對(duì)一切恒成立. ……………8分

, 

,單調(diào)遞增,
.  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知數(shù)列為方向向量的直線上,(I)求數(shù)列的通項(xiàng)公式;(II)求證:(其中e為自然對(duì)數(shù)的底數(shù));
(III)記
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項(xiàng)bn
(2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+)(其中a>0且a≠1),記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Snlogabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)在等比數(shù)列中,,并且(1)求以及數(shù)列的通項(xiàng)公式;(2)設(shè),求當(dāng)最大時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列,,
(Ⅰ)求數(shù)列的通項(xiàng)公式
(Ⅱ)當(dāng)時(shí),求證:
(Ⅲ)若函數(shù)滿足:
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列首項(xiàng),前項(xiàng)和之間滿足
(1)求證:數(shù)列是等差數(shù)列  (2)求數(shù)列的通項(xiàng)公式
(3)設(shè)存在正數(shù),使對(duì)于一切都成立,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為數(shù)列的前項(xiàng)和,,.
⑴設(shè)數(shù)列中,,求證:是等比數(shù)列;
⑵設(shè)數(shù)列中,,求證:是等差數(shù)列;
⑶求數(shù)列的通項(xiàng)公式及前項(xiàng)和.
【解題思路】由于中的項(xiàng)與中的項(xiàng)有關(guān),且,可利用、的關(guān)系作為切入點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

⑴已知為等差數(shù)列的前項(xiàng)和,,則          ;
⑵已知為等差數(shù)列的前項(xiàng)和,,則        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的通項(xiàng),則其前項(xiàng)和         

查看答案和解析>>

同步練習(xí)冊(cè)答案