【題目】已知正方體 ABCD-A1B1C1D1 的棱長為 1 , E 、F 分別是棱 ABBC上的動點 ,且AE = BF .求直線 A1E C1F 所成角的最小值(用反三角函數(shù)表示).

【答案】

【解析】

解法 1 :如圖延長 DC 到點 G, 使得 CG = AE , 聯(lián) 結(jié)C1GFG.

由題意知,A1E C1GA1E C1F 于∠FC1G .

AE = CG = x(0≤x≤1), 則有CF =1 - xC1G =,

.

C1FG 中, 由余弦定理得

.

FC1G 取得最小值就是取得最大值, 亦即取得最小值.

利用等式

.

所以,當(dāng)時,取得最小值.

因此,,即.

A1E C1F 所成的最小角為,此時, E 、F 分別為棱AB 、BC 的中點.

解法 2:前面同上, 得到.

.

,得.

所以, 當(dāng)時,取最小值.

以下與解法 1 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,討論函數(shù)的圖象的交點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)智慧城市的重要內(nèi)士,市在智慧城市的建設(shè)中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費.為了解免費市的使用情況,調(diào)査機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)査的網(wǎng)友中抽取了人進行抽樣分析,得到如下列聯(lián)表(單位:人)

經(jīng)常使用免費WiFi

偶爾或不用免費WiFi

合計

45歲及以下

70

30

100

45歲以上

60

40

100

合計

130

70

200

1)根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為市使用免費的情況與年齡有關(guān);

2)將頻率視為概率,現(xiàn)從該市歲以上的市民中用隨機抽樣的方法每次抽取人,共抽取次.記被抽取的人中偶爾或不用免費的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列,數(shù)學(xué)期望和方差

附:,其中

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),其中為自然對數(shù)的底數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)已知 為整數(shù),若對任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團”、“吉他協(xié)會”等五個社團,若每名同學(xué)必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中沒有人參加“演講團”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列滿足,,

1)求數(shù)列的通項公式;

2)求的最大項的值;

3)數(shù)列滿足,問是否存在正整數(shù)k,使得成等差數(shù)列?若存在,求出km的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線經(jīng)過點,傾斜角,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線

(Ⅰ)求曲線C的直角坐標(biāo)方程并寫出直線l的參數(shù)方程;

(Ⅱ)直線l與曲線C的交點為A,B,求點PA、B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸同側(cè)的兩個圓:動圓和圓外切(),且動圓軸相切.

(1)動圓的圓心軌跡方程;

(2)若直線與曲線有且僅有一個公共點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長為4的正方形,是正三角形,平面平面分別是的中點.

(1)求證:平面平面;

(2)若是線段上一點,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案