在直角梯形ABCD中, A為PD的中點(diǎn),如下圖,

將△PAB沿AB折到△SAB的位置,使SB⊥BC,點(diǎn)E在SD上,

(1)求證:SA⊥平面ABCD;

(2)求二面角E-AC-D的余弦值;

(3)在線段BC上是否存在點(diǎn)F,使SF//平面EAC?若存在,確定F點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由?

 

【答案】

(1)證:由原圖可知:BC⊥AB,又SB⊥BC,且AB∩AB=B,

得BC⊥面SAB,得BC⊥SA,

又原圖可知SA⊥AB,且AB∩BC=B,

即證:SA⊥面ABCD

  

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
12
AB=a(如圖),將△ADC沿AC折起,使D到D′.記面ACD′為α,面ABC為β,面BCD′為γ.
精英家教網(wǎng)
(1)若二面角α-AC-β為直二面角(如圖),求二面角β-BC-γ的大;
精英家教網(wǎng)
(2)若二面角α-AC-β為60°(如圖),求三棱錐D′-ABC的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•鹽城二模)如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動(dòng)點(diǎn)P在△BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
AP
AB
AD
(α,β∈R)
,則α+β的取值范圍是
[1,
4
3
]
[1,
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角梯形ABCD中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.E,F(xiàn),G分別為線段PC,PD,BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD.
(1)求證:AP∥平面EFG;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,試給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
,橢圓以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.
(Ⅰ)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(Ⅱ)以該橢圓的長(zhǎng)軸為直徑作圓,判斷點(diǎn)C與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,CD=3,S△BCD=6,則梯形ABCD的面積為
8
8
,點(diǎn)A到BD的距離AH=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案