【題目】某商店計(jì)劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.

若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤y單位:元關(guān)于當(dāng)天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤在區(qū)間”為事件A,求PA的估計(jì)值.

【答案】1 ;2 0.7

【解析】

試題分析:根據(jù)題意分段求解得出當(dāng)時(shí),,當(dāng)時(shí),50天內(nèi)有9天獲得的利潤380元,有11天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560,求其平均數(shù)即可.當(dāng)天的利潤在區(qū)間[400,500]有11+15+10天,即可求解概率.

試題解析: 解:當(dāng)日需求量時(shí),利潤為;

當(dāng)需求量時(shí),利潤

所以利潤與日需求量的函數(shù)關(guān)系式為:

50天內(nèi)有10天獲得的利潤380元,有10天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560元

.

事件A發(fā)生當(dāng)且僅當(dāng)日需求量n為9或10或11時(shí).由所給數(shù)據(jù)知,n=9或10或11的頻率為,

故PA的估計(jì)值為0.7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為Sn,點(diǎn)在直線上,數(shù)列為等差數(shù)列,且,前9項(xiàng)和為153.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè),數(shù)列的前n項(xiàng)和為,求使不等式對一切的都成立的最大整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

(Ⅰ)當(dāng)直線過點(diǎn)P且與圓心C的距離為1時(shí),求直線的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線與圓C交于A、B兩點(diǎn),若|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x) (m0,n0)

(1) 當(dāng)mn1時(shí),求證:f(x)不是奇函數(shù);

(2) 設(shè)f(x)是奇函數(shù),mn的值;

(3) (2)的條件下求不等式f(f(x))f <0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,且橢圓C過點(diǎn)P3,2

求橢圓C的標(biāo)準(zhǔn)方程;

與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x.

(Ⅰ)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為選拔參加“全市高中數(shù)學(xué)競賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競賽”活動(dòng).為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

(2)在選取的樣本中,從競賽成績在分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為40 m的半圓形綠化區(qū)域以O(shè) 為圓心,AB為直徑,現(xiàn)計(jì)劃對其進(jìn)行改建.在AB的延長線上取點(diǎn)D,OD=80 m,在半圓上選定一點(diǎn)C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2.設(shè)∠AOCx rad.

1寫出S關(guān)于x的函數(shù)關(guān)系式Sx,并指出x的取值范圍;

2試問∠AOC多大時(shí),改建后的綠化區(qū)域面積S取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過微克/立方米,24小時(shí)平均濃度不得超過微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年20天24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別

濃度

(微克/立方米)

頻數(shù)(天)

頻率

第一組

3

0.15

第二組

12

0.6

第三組

3

0.15

第四組

2

0.1

1從樣本中24小時(shí)平均濃度超過50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天

24小時(shí)平均濃度超過75微克/立方米的概率;

2求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從的年平均濃度考慮判斷該居民區(qū)的環(huán)境是

否需要改進(jìn)?說明理由

查看答案和解析>>

同步練習(xí)冊答案