設(shè)過定點A的直線l1的傾斜角為α.現(xiàn)將直線l1繞點A按逆時針方向旋轉(zhuǎn)45°得到直線l2,設(shè)直線l2的傾斜角為β,請用α表示β的值.

答案:
解析:

  解:畫出如圖的示意圖,從圖中可得

  當(dāng)0°≤α<135°時,β=α+45°;

  當(dāng)135°≤α<180°時,β=α+45°-180°=α-135°.


提示:

先畫出示意圖,根據(jù)圖形求解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩條過原點O的直線l1,l2分別與x軸、y軸成30°的角,已知線段PQ的長度為2,且點P(x1,y1)在直線l1上運動,點Q(x2,y2)在直線l2上運動.
(Ⅰ)求動點M(x1,x2)的軌跡C的方程;
(Ⅱ)設(shè)過定點T(0,2)的直線l與(Ⅰ)中的軌跡C交于不同的兩點A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線L與拋物線C:x2=4y相切于點P(2,1),且與x軸交于點A,O為坐標(biāo)原點,定點B(2,0)
(1)求點A的橫坐標(biāo).
(2)設(shè)動點M滿足
AB
BM
+
2
|
AM
|=0
,點M的軌跡K.若過點B的直線L1(斜率不等于0)與軌跡K交于不同的兩點E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)二模)已知定點F(2,0),直線l:x=2,點P為坐標(biāo)平面上的動點,過點P作直線l的垂線,垂足為點Q,且
FQ
⊥(
PF
+
PQ
)
.設(shè)動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F的直線l1與曲線C有兩個不同的交點A、B,求證:
1
|AF|
+
1
|BF|
=
1
2
;
(3)記
OA
OB
的夾角為θ(O為坐標(biāo)原點,A、B為(2)中的兩點),求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省株洲二中高三(下)第十次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,兩條過原點O的直線l1,l2分別與x軸、y軸成30°的角,已知線段PQ的長度為2,且點P(x1,y1)在直線l1上運動,點Q(x2,y2)在直線l2上運動.
(Ⅰ)求動點M(x1,x2)的軌跡C的方程;
(Ⅱ)設(shè)過定點T(0,2)的直線l與(Ⅰ)中的軌跡C交于不同的兩點A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案