已知點(diǎn)P(ρ,θ)是圓C:ρ-2sinθ=0上的動(dòng)點(diǎn).
(1)將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程,并求圓心的極坐標(biāo);
(2)若P(x,y)為圓C上的一個(gè)動(dòng)點(diǎn),求2x+y的取值范圍.
分析:(1)先在極坐標(biāo)方程ρ-2sinθ=0的兩邊同乘以ρ,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
(2)利用圓的參數(shù)方程
x=cosθ
y=1+sinθ
,將求2x+y的取值范圍問(wèn)題轉(zhuǎn)化為三角函數(shù)的最值問(wèn)題加以解決.
解答:解:(1)圓x2+y2=2y,C(1,
π
2
)
(角度不唯一
π
2
+2kπ
)            (5分)
(2)設(shè)圓的參數(shù)方程為
x=cosθ
y=1+sinθ
,2x+y=2cosθ+sinθ+1=
5
sin(θ+φ)+1

-
5
+1≤
5
sin(θ+φ)+1≤
5
+1

-
5
+1≤2x+y≤
5
+1
,
即2x+y的取值范圍為[-
5
+1,
5
+1]
.(10分)
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)是橢圓
x2
2
+y2=1上的點(diǎn),M(m,0)(m>0)是定點(diǎn),若|MP|的最小值等于
5
3
,則m=
2
3
2
+
5
3
2
3
2
+
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)是第一象限的點(diǎn),且點(diǎn)P在直線(xiàn)3x+2y=6上運(yùn)動(dòng),則使xy取最大值的點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(m,3)是拋物線(xiàn)y=x2+4x+n上距點(diǎn)A(-2,0)最近一點(diǎn),則m+n=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(5,1)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的一點(diǎn),F(xiàn)1、F2是橢圓的兩個(gè)焦點(diǎn),若△PF1F2的內(nèi)切圓的半徑為
1
3
,則此橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(m,n)是直線(xiàn)2x+y+5=0上的任意一點(diǎn),則
m2+n2
的最小值為(  )
A、
5
B、
10
C、5
D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案