設(shè)P是不等式組
x≥0,  y≥0
x-y≥-1
x+y≤3
表示的平面區(qū)域內(nèi)的任意一點,向量
m
=(1,1),
n
=(2,1),若
OP
m
n
(λ,μ為實數(shù)),則λ-μ的最大值為( 。
A、4B、3C、-1D、-2
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)向量線性運算的坐標(biāo)公式,得到
x=λ+2μ
y=λ+μ
,由此代入題中的不等式組,可得關(guān)于λ、μ的不等式組.作出不等式組表示的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:∵向量
m
=(1,1),
n
=(2,1),若
OP
m
n
(λ,μ∈R),
∴P(x,y)滿足
x=λ+2μ
y=λ+μ
,代入不等式組組
x≥0,  y≥0
x-y≥-1
x+y≤3
,
λ+2μ≥0
λ+μ≥0
μ≥-1
2λ+3μ≤3
,
設(shè)λ=x,μ=y,則不等式等價為
x+2y≥0
x+y≥0
y≥-1
2x+3y≤3

作出不等式組表示的平面區(qū)域(陰影部分),
設(shè)z=λ-μ=x-y,
即y=x-z,平移直線y=x-z,
則當(dāng)直線y=x-z經(jīng)過點B時,直線的截距最小,此時z最大,
y=-1
2x+3y=3
,解得
x=3
y=-1
,即B(3,-1),
此時z=x-y=3-(-1)=3+1=4,
即λ-μ的最大值為4,
故選:A.
點評:本題主要考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,將條件轉(zhuǎn)換為關(guān)于λ、μ的不等式組是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,Sn=kn2+n,n∈N*,其中k是常數(shù).若對于任意的m∈N*,am,a2m,a4m成等比數(shù)列,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于各項均為整數(shù)的數(shù)列{an},如果ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”,如果數(shù)列{an}不具有“P性質(zhì)”,只要存在與{an}不是同一數(shù)列的{bn},且{bn}同時滿足下面兩個條件:①b1,b2,b3,…bn是a1,a2,a3,…,an的一個排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”,下面三個數(shù)列:①數(shù)列1,2,3,4,5;②數(shù)列1,2,3,…,11,12;③數(shù)列{an}的前n項和為Sn=
n
3
(n2-1).其中具有“P性質(zhì)”或“變換P性質(zhì)”的有( 。
A、③B、①③C、①②D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間共有6名工人,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù),日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.從該車間6名工人中,任取2人,則恰有1名優(yōu)秀工人的概率為( 。
A、
8
15
B、
4
9
C、
1
3
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={1,2,3,4,5},M={l,3,5},則∁UM=( 。
A、{1,2,4}
B、{1,3,5}
C、{2,4}
D、U

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b>0,實數(shù)x,y滿足不等式組
x+2y≤2
2x+y≤2
x≥0,y≥0
,則當(dāng)
2a
a+b
+
b
a
取得最小值時,z=bx+ay取最大值的最優(yōu)解為( 。
A、(0,0)
B、(1,0)
C、(0,1)
D、(
2
3
,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x+2y-4≥0
x-y-4≤0
y≤a
所表示的平面區(qū)域的面積等于6,則a的值為( 。
A、1
B、
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2x+4sinx.
(Ⅰ)求f′(-
π
4
)的值;
(Ⅱ)求f(x)的最大值以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)問過坐標(biāo)原點可以作幾條直線與曲線y=f(x)相切?并說明理由;
(3)若g(x)=f(x)•e-x在區(qū)間(0,1)內(nèi)是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案