【題目】如圖1,在等腰中,,分別為,的中點(diǎn),的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)的位置(如圖2所示),且

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

【答案】(1)證明見(jiàn)解析

(2)

【解析】

1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;

(2)以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.

(1)證明:取的中點(diǎn),連接.

,∴的中點(diǎn).

的中點(diǎn),∴.

依題意可知,則四邊形為平行四邊形,

,從而.

平面,平面

平面.

(2),且

平面,平面,

,

,且

平面,

為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè)

,,,

,,.

設(shè)平面的法向量為,

,即,

,得.

設(shè)平面的法向量為,

,即,

,得.

從而,

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):

下列敘述錯(cuò)誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好

D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),若對(duì)任意的,均有,求的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,極坐標(biāo)系中,弧所在圓的圓心分別為,曲線是弧,曲線是弧,曲線是弧,曲線是弧.

1)分別寫出的極坐標(biāo)方程;

2)直線的參數(shù)方程為為參數(shù)),點(diǎn)的直角坐標(biāo)為,若直線與曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,點(diǎn)上,且

1)點(diǎn)上,,求證:平面;

2)若直線與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)關(guān)于的不等式的解集為,求的值;

(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司訂購(gòu)了一批樹(shù)苗,為了檢測(cè)這批樹(shù)苗是否合格,從中隨機(jī)抽測(cè)株樹(shù)苗的高度,經(jīng)數(shù)據(jù)處理得到如圖1所示的頻率分布直方圖,其中最高的株樹(shù)苗的高度的莖葉圖如圖2所示,以這株樹(shù)苗的高度的頻率估計(jì)整批樹(shù)苗高度的概率.

1)求這批樹(shù)苗的高度于米的概率,并求圖的值;

2)若從這批樹(shù)苗中隨機(jī)選取株,記為高度在的樹(shù)苗數(shù)量,求的分布列和數(shù)學(xué)期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布,如果這批樹(shù)苗的高度近似于正態(tài)分布的概率分布,則認(rèn)為這批樹(shù)苗是合格的,將順利被簽收,否則,公司將拒絕簽收.試問(wèn):該批樹(shù)苗是否被簽收?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(,,為常數(shù),為自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),討論函數(shù)在區(qū)間上極值點(diǎn)的個(gè)數(shù);

2)當(dāng),時(shí),對(duì)任意的都有成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為抗擊新型冠狀病毒,普及防護(hù)知識(shí),某校開(kāi)展了疫情防護(hù)網(wǎng)絡(luò)知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加該活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.

1)求的值,并估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);

2)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為優(yōu)秀,比賽成績(jī)低于80分為非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為比賽成績(jī)是否優(yōu)秀與性別有關(guān)?

優(yōu)秀

非優(yōu)秀

合計(jì)

男生

40

女生

50

合計(jì)

100

參考公式及數(shù)據(jù):.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案