(1)求log2[log3(log464)]的值;
(2)求32
2
5
•27-
4
3
的值;
(3)解不等式2x2-1≥4
分析:(1)直接利用對數(shù)的運算性質(zhì)直接求解log2[log3(log464)]的值即可;
(2)直接利用指數(shù)的運算性質(zhì)化簡求解32
2
5
•27-
4
3
的值;
(3)先利用指數(shù)性質(zhì)轉化不等式2x2-1≥4為二次不等式,然后求解即可..
解答:解:(1)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0;
(2)32
2
5
•27-
4
3
=(25)
2
5
•(33)-
4
3
=22•3-4=
4
81
;
(3)不等式2x2-1≥4化為.x2-1≥2,即x2≥3,解得x
3
或x≤-
3
點評:本題考查對數(shù)與指數(shù)的元素性質(zhì)的應用,指數(shù)不等式的解法,二次不等式的解法,考查計算能力轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應的一個特征向量為
1
-4
,點P(2,-1)在矩陣A對應的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二階矩陣M=(
a1
0b
)有特征值λ1=2及對應的一個特征向量
e
1
=
1
1

(Ⅰ)求矩陣M;
(II)若
a
=
2
1
,求M10
a

(2)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
  (θ為參數(shù)).
(Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的
1
2
倍,縱坐標壓縮為原來的
3
2
倍,得到曲線C2C,設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當m=5時,求函數(shù)f(x)的定義域;
(Ⅱ)若關于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省福州市高三第一學期期末質(zhì)量檢測文科數(shù)學 題型:解答題

.(本小題滿分l 2分) 已知{an}是等比數(shù)列,a1=2,且a1,a3+1,a4成等差數(shù)列.

(I)求數(shù)列{a n}的通項公式;

(Ⅱ)若bn=log2 an,求數(shù)列{bn}的前n項和Sn

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鹽城市東臺一中、時堰中學、唐洋中學高三(上)期中數(shù)學試卷(解析版) 題型:解答題

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應的一個特征向量為,點P(2,-1)在矩陣A對應的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年福建省泉州市惠安三中高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

已知二階矩陣M=()有特征值λ1=2及對應的一個特征向量
(Ⅰ)求矩陣M;
(II)若,求
(2)已知直線l:(t為參數(shù)),曲線C1  (θ為參數(shù)).
(Ⅰ)設l與C1相交于A,B兩點,求|AB|;
(Ⅱ)若把曲線C1上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線C2C,設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當m=5時,求函數(shù)f(x)的定義域;
(Ⅱ)若關于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

同步練習冊答案