【題目】已知橢圓的中心是坐標原點,焦點在軸上,離心率為,又橢圓上任一點到兩焦點的距離和為.過右焦點與軸不垂直的直線交橢圓于,兩點.
(1)求橢圓的方程;
(2)在線段上是否存在點,使得?若存在,求出的取值范圍;若不存在,請
說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知A(4, 0),B(2, 2),C (6, 0),記△ABC的外接圓為⊙P.
(1)求⊙P的方程.
(2)對于線段PA上的任意一點G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點在棱上,且.
(1)求異面直線與所成的角的大;
(2)求證:平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)的兩個極值點為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象過點的切線方程;
(3)對一切恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量(噸)與時間(單位:小時,規(guī)定早晨六點時)的函數(shù)關(guān)系為,水塔的進水量有10級,第一級每小時進水10噸,以后每提高一級, 進水量增加10噸.若某天水塔原有水100噸,在供應同時打開進水管.問該天進水量應選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象過點P ,圖象與P點最近的一個最高點坐標為 .
(1)求函數(shù)解析式;
(2)求函數(shù)的最大值,并寫出相應的x的值;
(3)求使y≤0時,x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com