【題目】現(xiàn)有一個以、為半徑的扇形池塘,在、上分別取點、,作、分別交弧于點、,且,現(xiàn)用漁網(wǎng)沿著、、、將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知, , ().
(1)若區(qū)域Ⅱ的總面積為,求的值;
(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬元、40萬元、20萬元,試問:當為多少時,年總收入最大?
【答案】(1)(2)
【解析】試題分析:(1)本問考查解三角函數(shù)的實際應用,由及可知,根據(jù)條件易證,所以 ,由可以求出 ,所以區(qū)域Ⅱ的總面積為,則,可以求出的值;(2)本問考查函數(shù)的最值問題,區(qū)域Ⅰ的面積可以根據(jù)扇形面積公式求得,區(qū)域Ⅱ的面積第(1)問中已經(jīng)求出,區(qū)域Ⅲ的面積可以用1/4圓的面積減去區(qū)域Ⅰ、Ⅱ的面積,于是得到年收入函數(shù),利用導數(shù)求函數(shù)的最大值即可得出年收入的最大值.
試題解析:(1)因為, ,所以.
因為, , ,
所以, .
又因為,所以.
所以 ,
又
所以
所以().
由得, , .
(2)因為,所以 .
記年總收入為萬元,
則
(),
所以,令,則.
當時, ;當時, .
故當時, 有最大值,即年總收入最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知()的圖像關于坐標原點對稱。
(1)求的值,并求出函數(shù)的零點;
(2)若函數(shù)在內(nèi)存在零點,求實數(shù)的取值范圍;
(3)設,若不等式在上恒成立,求滿足條件的最小整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列結論:
(1)若對任意,且,都有,則為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)t為常數(shù),若對任意的,都有則關于對稱。
其中所有正確的結論序號為_________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.
(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應的a值;若不垂直,請說明理由.
(2)當四面體ABCD的體積最大時,求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.且曲線的左焦點在直線上.
(1)若直線與曲線交于兩點,求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域為 (-∞,+∞), 求實數(shù)a的范圍;
(2)若f(x)的值域為 [0, +∞), 求實數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過曲線C1:-=1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,直線F1M交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若|MF1|=|MN|,則曲線C1的離心率為( )
A. B. -1 C. +1 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓+=1(a>b>0)的左焦點為F,右頂點為A,拋物線y2= (a+c)x與橢圓交于B,C兩點,若四邊形ABFC是菱形,則橢圓的離心率等于( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com