精英家教網 > 高中數學 > 題目詳情

【題目】如圖,四邊形ABCD內接于⊙O,過點A作⊙O的切線EP交CB的延長線于P,∠PAB=35°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠PAB=35°,求證:

【答案】
(1)解:∵EP與⊙O相切于點A,∴∠ACB=∠PAB=35°,

又BC是⊙O的直徑,∴∠ABC=55°.

∵四邊形ABCD內接于⊙O,∴∠ABC+∠D=180°,

∴∠D=112°


(2)證明:∵∠DAE=35°,

∴∠ACD=∠PAB,∠D=∠PBA,

∴△ADC∽△ABP,

= ,∠DBA=∠BDA,

∴DA=BA,∴DA2=DCBP,AP2=PCBP,


【解析】(1)由弦切角定理得∠ACB=∠PAB=25°,從而∠ABC=65°,由此利用四邊形ABCD內接于⊙O,能求出∠D.(2)由∠DAE=25°,∠ACD=∠PAB,∠D=∠PBA,從而△ADC∽△PBA,由此能證明DA2=DCBP,AP2=PCBP,即可證明結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某程序框圖如圖所示,若輸出S= ,則判斷框中M為(

A.k<7?
B.k≤6?
C.k≤8?
D.k<8?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題 :若 ,則 ,下列說法正確的是( )

A. 命題 的否命題是“若 ,則

B. 命題的逆否命題是“若 ,則

C. 命題是真命題

D. 命題的逆命題是真命題

【答案】D

【解析】A. 命題 的否命題是若

B. 命題的逆否命題是,則

C. 命題是假命題,比如當x=-3,就不滿足條件,故選項不正確.

D. 命題的逆命題是若是真命題.

故答案為:D.

型】單選題
束】
9

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 的內角 , , 所對的邊分別為 , ,且 , .

(1)當 時,求 的值;

(2)當的面積為 時,求的周長.

【答案】(1) (2)8

【解析】試題分析:(1)由 ,由正弦定理得到;(2)根據面積公式得到,再由余弦定理得到,進而得到.

解析:

(1)因為 ,所以

由正弦定理 ,可得

(2)因為 的面積

所以

由余弦定理

,即

所以 ,

所以

所以, 的周長為

型】解答
束】
18

【題目】如圖,在四棱錐 中,底面 是平行四邊形, , , 底面.

(1)求證: 平面 ;

(2)若 的中點,求直線 與平面 所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列 的前 項和為 ,并且滿足 .

(1)求數列 通項公式;

(2)設 為數列 的前 項和,求證: .

【答案】(1) (2)見解析

【解析】試題分析:(1)根據題意得到, ,兩式做差得到;(2)根據第一問得到,由錯位相減法得到前n項和,進而可證和小于1.

解析:

(1)∵

時,

時, ,即

∴數列 時以 為首項, 為公差的等差數列.

.

(2)∵

由① ②得

點睛:這個題目考查的是數列通項公式的求法及數列求和的常用方法;數列通項的求法中有常見的已知的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等.

型】解答
束】
22

【題目】已知 分別是橢圓 )的左、右焦點, 是橢圓 上的一點,且 ,橢圓 的離心率為 .

(1)求橢圓 的標準方程;

(2)若直線 與橢圓 交于不同兩點 , ,橢圓 上存在點 ,使得以 , 為鄰邊的四邊形 為平行四邊形( 為坐標原點).

)求實數 的關系;

)證明:四邊形 的面積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】滿足的正整數對共有______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數a、m滿足a= cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7 , 且(a0+a2+a4+a62﹣(a1+a3+a5+a72=37 , 則m=(
A.﹣1或3
B.1或﹣3
C.1
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,頂點A(a,0),B(0,b),中心O到直線AB的距離為
(1)求橢圓C的方程;
(2)設橢圓C上一動點P滿足: ,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為﹣ ,若Q(λ,μ)為一動點,E1(﹣ ,0),E2 ,0)為兩定點,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若,求處的切線方程;

(Ⅱ)證明:對任意正數,函數的圖像總有兩個公共點.

查看答案和解析>>

同步練習冊答案