【題目】某商場預(yù)計全年分批購入電視機3600臺,其中每臺價值2000元,每批購入的臺數(shù)相同,且每批均需付運費400元,儲存購入的電視機全年所付保管費與每批購入的電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需要支付運費和保管費共43600.

1)求的值;

2)請問如何安排每批進貨的數(shù)量,使支付運費與保管費的和最少?并求出相應(yīng)最少費用.

【答案】1;(2)每批進貨120臺,支付運費與保管費的和最少,最少費用為24000.

【解析】

1)根據(jù)每批購入400臺的需要支付運費和保管費共43600元可求的值;

2)先求解關(guān)于進貨量的所支付的費用之和,結(jié)合解析式的特點求解最值即可.

1)由題意,當(dāng)每批購入400臺時,全年的運費為,

每批購入的電視機的總價值為(元),所以保管費為(元)

因為全年需要支付運費和保管費共43600元,所以,解得.

2)設(shè)每批進貨臺,則運費為,保管費為,

所以支付運費與保管費的和為,

因為,當(dāng)且僅當(dāng),即時取到等號,所以每批進貨120臺,支付運費與保管費的和最少,最少費用為24000.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所學(xué)校進行同一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下列聯(lián)表:

班級與成績列聯(lián)表

優(yōu)秀

不優(yōu)秀

總計

甲隊

80

40

120

乙隊

240

200

240

合計

320

240

560

(1)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為成績與學(xué)校有關(guān)系;

(2)采用分層抽樣的方法在兩所學(xué)校成績優(yōu)秀的320名學(xué)生中抽取16名同學(xué).現(xiàn)從這16名同學(xué)中隨機抽取3名運同學(xué)作為成績優(yōu)秀學(xué)生代表介紹學(xué)習(xí)經(jīng)驗,記這3名同學(xué)來自甲學(xué)校的人數(shù)為,求的分布列與數(shù)學(xué)期望.附:

參考數(shù)據(jù):

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓,離心率,且橢圓過點.

(1)求橢圓的方程;

(2)設(shè)橢圓左、右焦點分別為,過的直線與橢圓交于不同的兩點,則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點,與拋物線相交于兩點,且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點的兩條直線、分別交拋物線于點、、,線段的中點分別為、.如果直線的傾斜角互余,求證:直線經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,且,點為線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式(組)的解集

(1)

(2)

(3)求解關(guān)于的不等式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)用五點法作出在長度為一個周期的閉區(qū)間上的簡圖;

2)寫出的對稱中心與單調(diào)遞增區(qū)間,并求振幅、周期、頻率、相位及初相;

3)求的最大值以及取得最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊邊長為的正方形鐵皮,將其四個角各截去一個邊長為的小正方形,然后折成一個無蓋的盒子.

(1)求出盒子的體積為自變量的函數(shù)解析式,并寫出這個函數(shù)的定義域;

(2)如果要做一個容積是的無蓋盒子,那么截去的小正方形的邊長是多少(精確度0.01,結(jié)果保留一位小數(shù))?

查看答案和解析>>

同步練習(xí)冊答案