【題目】設(shè)函數(shù)是定義在上的連續(xù)函數(shù),且在處存在導(dǎo)數(shù),若函數(shù)及其導(dǎo)函數(shù)滿足,則函數(shù)( )

A.既有極大值又有極小值B.有極大值 ,無極小值

C.有極小值,無極大值D.既無極大值也無極小值

【答案】C

【解析】

本題首先可以根據(jù)構(gòu)造函數(shù),然后利用函數(shù)處存在導(dǎo)數(shù)即可求出的值并求出函數(shù)的解析式,然后通過求導(dǎo)即可判斷出函數(shù)的極值。

由題意可知,,即

所以,

,則

因為函數(shù)處存在導(dǎo)數(shù),所以為定值,,

所以,

,當(dāng)時,,

構(gòu)建函數(shù),則有

所以函數(shù)上單調(diào)遞增,

當(dāng),,令,解得

所以上單調(diào)遞減,在上單調(diào)遞增,

因為,,

所以當(dāng)時函數(shù)必有一解,

令這一解為,,則當(dāng),

當(dāng),

綜上所述,上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞增,

所以有極小值,無極大值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線)上一動點, 、是圓的兩條切線, 、為切點, 為圓心,若四邊形面積的最小值是,則的值是( )

A. B. C. D.

【答案】D

【解析】∵圓的方程為:

∴圓心C(0,1),半徑r=1.

根據(jù)題意,若四邊形面積最小,當(dāng)圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最小。切線長為4,

,

∴圓心到直線l的距離為.

∵直線,

,解得,

所求直線的斜率為

故選D.

型】單選題
結(jié)束】
19

【題目】拋物線的焦點為,準線為,經(jīng)過且斜率為的直線與拋物線在軸上方的部分相交于點 ,垂足為,則的面積是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為雙曲線的左右焦點,左右頂點為,是雙曲線上任意一點,則分別以線段為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)設(shè)函數(shù),其中是自然對數(shù)的底數(shù),討論的單調(diào)性并判斷有無極值,有極值時求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數(shù)a的值;

(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,右焦點,過點的直線交橢圓兩點.

(1)求橢圓的方程;

(2)若點關(guān)于軸的對稱點為 ,求證: 三點共線;

(3) 當(dāng)面積最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十八屆五中全會首次提出了綠色發(fā)展理念,將綠色發(fā)展作為十三五乃至更長時期經(jīng)濟社會發(fā)展的一個重要理念.某地區(qū)踐行綠水青山就是金山銀山的綠色發(fā)展理念,2015年初至2019年初,該地區(qū)綠化面積y(單位:平方公里)的數(shù)據(jù)如下表:

年份

2015

2016

2017

2018

2019

年份代號x

1

2

3

4

5

綠化面積y

2.8

3.5

4.3

4.7

5.2

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

2)利用(1)中的回歸方程,預(yù)測該地區(qū)2025年初的綠化面積.

(參考公式:線性回歸方程:,為數(shù)據(jù)平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長

查看答案和解析>>

同步練習(xí)冊答案