為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
5
 
女生
10
 
 
合計(jì)
 
 
50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:
(1)
 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
20
5
25
女生
10
15
25
合計(jì)
30
20
50
(2) 有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān);(3) 不全被選中的概率

試題分析:(1)根據(jù)在全部50人中隨機(jī)抽取1人抽到喜愛打羽毛球的學(xué)生的概率,做出喜愛打羽毛球的人數(shù),進(jìn)而做出男生的人數(shù),填好表格.(2)根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握說明打羽毛球和性別有關(guān)系.(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,列舉出其一切可能的結(jié)果組成的基本事件,而用M表示“B1,C1不全被選中”這一事件,則其對立事件表示“B1,C1全被選中”這一事件,通過列舉得到對立事件的事件數(shù),求出概率,最后利用對立事件概率求解即可.
試題解析:(1)列聯(lián)表補(bǔ)充如下:
 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
20
5
25
女生
10
15
25
合計(jì)
30
20
50
(2)∵
∴有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān).
(3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:
,,,,,,,,
基本事件的總數(shù)為18,用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于
, 3個(gè)基本事件組成,所以
由對立事件的概率公式得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2014·嘉興模擬)在一次運(yùn)動(dòng)員的選拔中,測得7名選手身高(單位:cm)分布的莖葉圖如圖所示.已知記錄的平均身高為164cm,但有一名候選人的身高記錄不清楚,其末位數(shù)記為x,那么x的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某班的全體學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100].若低于60分的人數(shù)是15,則該班的學(xué)生人數(shù)是(   )
A.45B.50
C.55D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將某選手的7個(gè)得分去掉1個(gè)最高分,去掉1個(gè)最低分,剩余5個(gè)得分的平均分為91,現(xiàn)場做的7個(gè)得分的莖葉圖(如圖)后來有一個(gè)數(shù)據(jù)模糊,無法辨認(rèn),在圖中用表示,則x的值為(   )
 
A.0 B.4 C.5 D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h).試驗(yàn)的觀測結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
0.6
1.2
2.7
1.5
2.8
1.8
2.2
2.3
3.2
3.5
2.5
2.6
1.2
2.7
1.5
2.9
3.0
3.1
2.3
2.4
服用B藥的20位患者日平均增加的睡眠時(shí)間:
3.2
1.7
1.9
0.8
0.9
2.4
1.2
2.6
1.3
1.4
1.6
0.5
1.8
0.6
2.1
1.1
2.5
1.2
2.7
0.5
(1) 分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2) 根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
A藥
 
B藥
 
0.
1.
2.
3.
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在樣本的頻率分布直方圖中,共有9個(gè)小長方形,若第一個(gè)長方形的面積為0.02,前五個(gè)與后五個(gè)長方形的面積分別成等差數(shù)列且公差是互為相反數(shù),若樣本容量為1 600,則中間一組(即第五組)的頻數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知樣本數(shù)據(jù),其中的平均數(shù)為,的平均數(shù)為,則樣本數(shù)據(jù)的平均數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某社區(qū)對該區(qū)所轄的老年人是否需要特殊照顧進(jìn)行了一項(xiàng)分性別的抽樣調(diào)查,針對男性老年人和女性老年人需要特殊照顧和不需要特殊照顧得出了一個(gè)2×2的列聯(lián)表,并計(jì)算得出k=4.350,則下列結(jié)論正確的是(  )
A.有95%的把握認(rèn)為該社區(qū)的老年人是否需要特殊照顧與性別有關(guān)
B.有95%的把握認(rèn)為該社區(qū)的老年人是否需要特殊照顧與性別無關(guān)
C.該社區(qū)需要特殊照顧的老年人中有95%是男性
D.該地區(qū)每100名老年人中有5個(gè)需要特殊照顧

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某學(xué)校舉行課外綜合知識比賽,隨機(jī)抽取400名同學(xué)的成績,成績?nèi)吭?0分至100分之間,將成績按如下方式分成5組:第一組,成績大于等于50分且小于60分;第二組,成績大于等于60分且小于70分……第五組,成績大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.則400名同學(xué)中成績優(yōu)秀(大于等于80分)的學(xué)生有   名.

查看答案和解析>>

同步練習(xí)冊答案