(本小題滿分13分)
已知R,函數(shù)
.
(1)求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),
.
(1)當(dāng)時(shí),
恒成立,此時(shí)
的單調(diào)區(qū)間為
當(dāng)時(shí),
,此時(shí)
的單調(diào)遞增區(qū)間為
和
,
單調(diào)遞減區(qū)間為
(2)構(gòu)造函數(shù),利用放縮法的思想來(lái)求證不等式的成立。
【解析】
試題分析:解:(1)由題意得 ………2分
當(dāng)時(shí),
恒成立,此時(shí)
的單調(diào)區(qū)間為
……4分
當(dāng)時(shí),
,
此時(shí)的單調(diào)遞增區(qū)間為
和
,
單調(diào)遞減區(qū)間為 ……………6分
(2)證明:由于,所以當(dāng)
時(shí),
…………8分
當(dāng)時(shí),
……10分
設(shè),則
,
于是隨
的變化情況如下表:
|
0 |
|
|
|
1 |
|
|
|
0 |
|
|
|
1 |
減 |
極小值 |
增 |
1 |
所以, …………12分
所以,當(dāng)時(shí),
,
故 …………13分
(2)另解:由于,所以當(dāng)
時(shí),
.
令,則
.
當(dāng)時(shí),
在
上遞增,
………8分
當(dāng)時(shí),
,
在
上遞減,在
上遞增,所以
.
故當(dāng)時(shí),
………10分
當(dāng)時(shí),
.
設(shè),則
,
③當(dāng)時(shí),
在
上遞減,
……11分
④當(dāng)時(shí),
在
上遞減,在
上遞增,所以
.
故當(dāng)時(shí),
.
故 …………13分
考點(diǎn):本試題考查了導(dǎo)數(shù)在研究函數(shù)中點(diǎn)運(yùn)用。
點(diǎn)評(píng):對(duì)于含有參數(shù)的函數(shù)的單調(diào)區(qū)間的求解,這一點(diǎn)是高考的重點(diǎn),同時(shí)對(duì)于參數(shù)的分類討論思想,這是解決這類問(wèn)題的難點(diǎn),而分類的標(biāo)準(zhǔn)一般要考慮到函數(shù)的定義域?qū)τ趨?shù)的制約,進(jìn)而分析得到。而不等式的恒成立問(wèn)題,常常轉(zhuǎn)化為分離參數(shù) 思想,求解函數(shù)的最值來(lái)完成。屬于難度題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間
上的圖象.
(3)設(shè)0<x<,且方程
有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合,
,
.
(1)求(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,
為
的中點(diǎn)。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來(lái)源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數(shù)
,數(shù)列{
}的首項(xiàng)
.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列的前
項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com