【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現(xiàn)有以下幾個結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號為________.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側(cè)棱上,求沒入水中部分的長度;
(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側(cè)棱上,求沒入水中部分的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)且.
(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))
(II)設函數(shù),當時,曲線與有兩個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調(diào)性,并求出g(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017開封高三模擬理】如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點.將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點P,則三棱錐P-DCE的外接球的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2014高考課標2理數(shù)18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,
E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率,過橢圓的左焦點且傾斜角為的直線與圓相交所得弦的長度為1.
(1)求橢圓的方程;
(2)若直線交橢圓于不同的兩點,設, ,其中為坐標原點.當以線段為直徑的圓恰好過點時,求證: 的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解學生的身體素質(zhì)情況,現(xiàn)從我校學生中隨機抽取10人進行體能測試,測試的分數(shù)(百分制)如莖葉圖所示.根據(jù)有關國家標準,成績不低于79分的為優(yōu)秀,將頻率視為概率.
(1)另從我校學生中任取3人進行測試,求至少有1人成績是“優(yōu)秀”的概率;
(2)從前文所指的這10人(成績見莖葉圖)中隨機選取3人,記 表示測試成績?yōu)椤皟?yōu)秀”的學生人數(shù),求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為( )
A.y=x3
B.y=lgx
C.y=|x|
D.y=x﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com