過雙曲線x2-
y22
=1的右焦點(diǎn)作直線l交雙曲線于A、B兩點(diǎn),若實(shí)數(shù)λ使得|AB|=λ的直線l恰有3條,則λ=
4
4
分析:利用實(shí)數(shù)λ使得|AB|=λ的直線l恰有3條,根據(jù)對稱性,其中有一條直線與實(shí)軸垂直,求出直線與實(shí)軸垂直時,線段的長度為4,再作驗(yàn)證,即可得到結(jié)論.
解答:解:∵實(shí)數(shù)λ使得|AB|=λ的直線l恰有3條
∴根據(jù)對稱性,其中有一條直線與實(shí)軸垂直
此時A,B的橫坐標(biāo)為
3
,代入雙曲線方程,可得y=±2,故|AB|=4
∵雙曲線的兩個頂點(diǎn)之間的距離是2,小于4,
∴過拋物線的焦點(diǎn)一定有兩條直線使得交點(diǎn)之間的距離等于4,
綜上可知,|AB|=4時,有三條直線滿足題意
∴λ=4
故答案為:4
點(diǎn)評:本題考查直線與雙曲線之間的關(guān)系問題,本題解題的關(guān)鍵是判定直線與實(shí)軸垂直時,線段的長度為4,再作驗(yàn)證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
2
=1
的右焦點(diǎn)作直線l交雙曲線與A,B兩點(diǎn),若|AB|=5則這樣的直線共有( 。l
A、2B、3C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過點(diǎn)(2,4)作直線與拋物線y2=8x有且只有一個公共點(diǎn),這樣的直線有2條;
②過拋物線y2=4x的焦點(diǎn)作一條直線與拋物線相交于A,B兩點(diǎn),它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(diǎn)(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點(diǎn),這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點(diǎn)作直線l交雙曲線于A,B兩點(diǎn),若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點(diǎn)A(1,1),過點(diǎn)A能作一條直線l,使它與雙曲線交于P,Q兩點(diǎn),且點(diǎn)A恰為線段PQ的中點(diǎn).
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個關(guān)于圓錐曲線的命題中:
①雙曲線
x2
16
-
y2
9
=1
與橢圓
x2
49
+
y2
24
=1
有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A、B為兩個定點(diǎn),P為動點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動點(diǎn)P的軌跡為橢圓;
③方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④過雙曲線x2-
y2
2
=1
的右焦點(diǎn)F作直線l交雙曲線于A、B兩點(diǎn),若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號為
①④
①④
(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
2
=1
的右焦點(diǎn)作直線l交雙曲線與A,B兩點(diǎn).若使|AB|=λ(λ為實(shí)數(shù))的直線l恰有三條,則λ=( 。

查看答案和解析>>

同步練習(xí)冊答案