【題目】直線l過(guò)定點(diǎn)P(0,1),且與直線l1x3y100,l22xy80分別交于AB兩點(diǎn).若線段AB的中點(diǎn)為P,求直線l的方程.

【答案】x4y40

【解析】解法一:設(shè)A(x0,y0),由中點(diǎn)公式,有B(x02y0),∵Al1上,Bl2上,∴kAP,

故所求直線l的方程為yx1,即x4y40.

解法二:設(shè)所求直線l方程為ykx1

由方程組,

由方程組,

∵A、B的中點(diǎn)為P(0,1),∴k.

故所求直線l的方程為x4y40.

解法三:設(shè)A(x1,y1)、B(x2,y2),P(0,1)MN的中點(diǎn),則有代入l2的方程,得2(x1)2y180,即2x1y160.由方程組解得由兩點(diǎn)式可得所求直線l的方程為x4y40.

解法四:同解法一,設(shè)A(x0,y0),兩式相減得x04y040,(1)

考察直線x4y40,一方面由(1)A(x0y0)在該直線上;另一方面P(0,1)也在該直線上,從而直線x4y40過(guò)點(diǎn)P、A.根據(jù)兩點(diǎn)決定一條直線知,所求直線l的方程為x4y40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

)判斷函數(shù) 是否是有界函數(shù),請(qǐng)寫(xiě)出詳細(xì)判斷過(guò)程.

)試證明:設(shè), ,若 上分別以 為上界,求證:函數(shù)上以為上界.

)若函數(shù)上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn}的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅲ)證明:對(duì)所有的 n∈N* , sin

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(已知函數(shù)f(x)= ,則y=f(x)的圖象大致為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求與點(diǎn)P(3,5)關(guān)于直線l:x-3y+2=0對(duì)稱的點(diǎn)P′的坐標(biāo).(2)已知直線l:y=-2x+6和點(diǎn)A(1,-1),過(guò)點(diǎn)A作直線l1與直線l相交于B點(diǎn),且|AB|=5,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex
(Ⅰ)證明:當(dāng)x∈[0,3]時(shí),
(Ⅱ)證明:當(dāng)x∈[2,3]時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓M過(guò)點(diǎn)A(1,3),B(4,2),且圓心在直線y=x﹣3上.
(Ⅰ)求圓M的方程;
(Ⅱ)若過(guò)點(diǎn)(﹣4,1)的直線l與圓M相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)一種產(chǎn)品的固定成本(即固定投入)為0.5萬(wàn)元,但每生產(chǎn)一百件這樣的產(chǎn)品,需要增加可變成本(即另增加投入)0.25萬(wàn)元. 市場(chǎng)對(duì)此產(chǎn)品的年需求量為500件,銷售的收入函數(shù)為= (單位:萬(wàn)元),其中是產(chǎn)品售出的數(shù)量(單位:百件).

(1)該公司這種產(chǎn)品的年產(chǎn)量為百件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤(rùn)為當(dāng)年產(chǎn)量的函數(shù),求;

(2)當(dāng)年產(chǎn)量是多少時(shí),工廠所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知右焦點(diǎn)為F(c,0)的橢圓M: =1(a>b>0)過(guò)點(diǎn) ,且橢圓M關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓M的方程;
(2)過(guò)點(diǎn)(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點(diǎn),點(diǎn)Q關(guān)于x軸的對(duì)稱原點(diǎn)為E,證明:直線PE與x軸的交點(diǎn)為F.

查看答案和解析>>

同步練習(xí)冊(cè)答案