若橢圓經(jīng)過點,,其焦點在軸上,則該橢圓的標準方程為       。
∵橢圓的焦點在軸上,∴可設方程為,又∵,∴,而橢圓過點,把點的坐標代入,得,∴,故橢圓的標準方程是。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線x2-3y2=3的右焦點為F,右準線為l,以F為左焦點,以l為左準線的橢圓C的中心為A,又A點關于直線y=2x的對稱點A’恰好在雙曲線的左準線上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,,雙曲線M是以B、C為焦點且過A點.(Ⅰ)建立適當?shù)淖鴺讼,求雙曲線M的方程;(Ⅱ)設過點E(1,0)的直線l分別與雙曲線M的左、右支交于F、G兩點,直線l的斜率為k,求k的取值范圍.;

(Ⅲ)對于(II)中的直線l,是否存在k使|OF|=|OG|
若有求出k的值,若沒有說明理由.(O為原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知動點的坐標滿足,則動點的軌跡是(      )
A.橢圓B.雙曲線C.拋物線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與曲線的交點個數(shù)是   (     )
A 0個       B  1個       C  2個       D  3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點為橢圓的中心.橢圓的離心率是拋物線離心率的一半,且它們的準線互相平行。又拋物線與橢圓交于點,求拋物線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線上任意一點到焦點F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點F的直線交拋物線于M,N兩點,M在第一象限,且,求直線MN的方程;(3)過點的直線交拋物線于P、Q兩點,設點P關于軸的對稱點為R,求證:直線RQ必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為,雙曲線的離心率為,則+的最小值為( )
A.B.2C.D.4

查看答案和解析>>

同步練習冊答案