線段AB長(zhǎng)為3,其端點(diǎn)A、B分別在x、y軸上移動(dòng),則AB的中點(diǎn)M的軌跡方程是______.
設(shè)A(m,0)、B(0,n),則|AB|2=m2+n2=9,
再設(shè)線段AB中點(diǎn)P的坐標(biāo)為(x,y),則x=
m
2
,y=
n
2
,即m=2x,n=2y,
所以4x2+4y2=9,即AB中點(diǎn)的軌跡方程為x2+y2=
9
4

故答案為:x2+y2=
9
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過點(diǎn)P(3,0)且與圓x2+6x+y2-91=0相內(nèi)切的動(dòng)圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)F1(-1,0),F(xiàn)2(1,0),動(dòng)點(diǎn)P滿足|PF1|+|PF2|=2
3

(1)求點(diǎn)P的軌跡C的方程;
(2)若直線l:y=kx+2與軌跡C交于A、B兩點(diǎn),且
OA
OB
=0
(其中O為坐標(biāo)原點(diǎn)),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A(1,0),B(4,0),動(dòng)點(diǎn)T(x,y)滿足
|TA|
|TB|
=
1
2
,設(shè)動(dòng)點(diǎn)T的軌跡是曲線C,直線l:y=kx+1與曲線C交于P,Q兩點(diǎn).
(1)求曲線C的方程;
(2)若
OP
OQ
=-2
,求實(shí)數(shù)k的值;
(3)過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與曲線C交于M,N兩點(diǎn),求四邊形PMQN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知半徑為1的動(dòng)圓與圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定直線l與平面α成60°角,點(diǎn)P是平面α內(nèi)的一動(dòng)點(diǎn),且點(diǎn)P到直線l的距離為3,則動(dòng)點(diǎn)P的軌跡是( 。
A.圓B.橢圓的一部分
C.拋物線的一部分D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

等腰三角形的頂點(diǎn)是A(4,2),底邊一個(gè)端點(diǎn)是B(3,5),求另一個(gè)頂點(diǎn)C的軌跡方程,并說明它的軌跡是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知長(zhǎng)為
2
+1
的線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),P是AB上的一點(diǎn),且
AP
=
2
2
PB
,則點(diǎn)P的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P(x,y)滿足|PF1|-|PF2|=10,則動(dòng)點(diǎn)P的軌跡方程是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案