【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線l被圓C截得的弦長(zhǎng).

【答案】

【解析】

由題意,消去參數(shù)即可得到直線的普通方程,利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到曲線的極坐標(biāo)方程,再利用圓的弦長(zhǎng)公式,即可求解弦長(zhǎng).

解:直線l的參數(shù)方程(t為參數(shù))化為直角坐標(biāo)方程是yx-3,

C的極坐標(biāo)方程ρ=4cos θ化為直角坐標(biāo)方程是x2y2-4x=0.

C的圓心(2,0)到直線xy-3=0的距離為d

又圓C的半徑r=2,

所以直線l被圓C截得的弦長(zhǎng)為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于的動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求證:以 為直徑的圓與直線恒相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用水清洗一堆蔬菜上殘留的農(nóng)藥,對(duì)用一定量的水清洗一次的效果作如下假定:用1個(gè)單位量的水可洗掉蔬菜上殘留農(nóng)藥量的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)

1)試規(guī)定的值,并解釋其實(shí)際意義;

2)試根據(jù)假定寫出函數(shù)應(yīng)該滿足的條件和具有的性質(zhì);

3)設(shè).現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較省?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)上有定義,要使函數(shù)有定義,則a的取值范圍為

A.;B.C.;D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( )

A. 2017年第一季度GDP增速由高到低排位第5的是浙江省.

B. 與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長(zhǎng).

C. 去年同期河南省的GDP總量不超過4000億元 .

D. 2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)節(jié)約用電,遼寧省實(shí)行階梯電價(jià)制度,其中每戶的用電單價(jià)與戶年用電量的關(guān)系如下表所示.

分檔

戶年用電量(度)

用電單價(jià)(元/度)

第一階梯

0.5

第二階梯

0.55

第三階梯

0.80

記用戶年用電量為度時(shí)應(yīng)繳納的電費(fèi)為.

1)寫出的解析式;

2)假設(shè)居住在沈陽的范偉一家2018年共用電3000度,則范偉一家2018年應(yīng)繳納電費(fèi)多少元?

3)居住在大連的張莉一家在2018年共繳納電費(fèi)1942元,則張莉一家在2018年用了多少度電?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,平面底面,四邊形正方形, 的中點(diǎn),且,.

(I)證明:

(Ⅱ)求直線與平面所成角的正弦值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對(duì)統(tǒng)計(jì)圖理解錯(cuò)誤的是( )

A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務(wù)量同比增長(zhǎng)率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長(zhǎng)率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長(zhǎng)率逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)中,設(shè)橢圓的左右兩個(gè)焦點(diǎn)分別為,,過右焦點(diǎn)且與軸垂直的直線與橢圓相交,其中一個(gè)交點(diǎn)為.

(1)求橢圓的方程;

(2)已知經(jīng)過點(diǎn)且斜率為,直線與橢圓有兩個(gè)不同的交點(diǎn),請(qǐng)問是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案