(本小題滿分14分)已知函數(shù)
(I)求函數(shù)在上的最小值;
(II)對一切恒成立,求實數(shù)的取值范圍;
(III)求證:對一切,都有
(I)f ′(x)=lnx+1,當x∈(0,),f ′(x)<0,f (x)單調遞減,
當x∈(,+∞),f ′(x)>0,f (x)單調遞增. ……2分
①0<t<t+2<,t無解;
②0<t<<t+2,即0<t<時,f (x)min=f ()=-;
③≤t<t+2,即t≥時,f (x)在[t,t+2]上單調遞增,f (x)min=f (t)=tlnt;
所以f (x)min=. ……5分
(II)2xlnx≥-x2+ax-3,則a≤2lnx+x+, ……6分
設h (x)=2lnx+x+(x>0),則h′(x)=,x∈(0,1),h′(x)<0,h (x)單調遞減,
x∈(1,+∞),h′(x)>0,h(x)單調遞增,所以h (x)min=h (1)=4,
因為對一切x∈(0,+∞),2f(x)≥g (x)恒成立,
所以a≤h (x)min=4.……10分
(III)問題等價于證明xlnx>-(x∈(0,+∞)),
由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-,當且僅當x=時取到.
設m (x)=-(x∈(0,+∞)),則m ′(x)=,
易得m (x)max=m (1)=-,當且僅當x=1時取到,
從而對一切x∈(0,+∞),都有l(wèi)nx>-. ……14分
解析
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)設是定義在上的函數(shù),且對任意,當時,都有;
(1)當時,比較的大。
(2)解不等式;
(3)設且,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)已知的反函數(shù)為.
(1)若函數(shù)在區(qū)間上單增,求實數(shù)的取值范圍;
(2)若關于的方程在內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)已知函數(shù).
(1)若對任意恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)的圖像與直線有且僅有三個公共點,且公共點的橫坐標的最大值為,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設f(x)是定義在[-1,1]上的奇函數(shù),且對任意的實數(shù)a,b∈[-1,1],當a+b
≠0時,都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x-)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個函數(shù)的定義域的交集是空集,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(1)求m的值;
(2)若斜率為-5的直線是曲線的切線,求此直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某工廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少時,零件的實際出廠單價恰為51元;
(2)設一次訂購量為x個,零件的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少?如果訂購1 000個,利潤又是多少?(工廠售出一個零件的利潤=實際出廠單價-成本
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com