已知函數(shù)f(x)的定義域為[0,2],則
f(2x)
x
的定義域為( 。
A、{x|0<x≤4}
B、{x|0≤x≤4}
C、{x|0<x≤1}
D、{x|0≤x≤1}
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵f(x)的定義域為[0,2],
∴要使函數(shù)
f(2x)
x
有意義,則
0≤2x≤2
x≠0
,
0≤x≤1
x≠0
,
解得0<x≤1,
即函數(shù)的定義域為{x|0<x≤1},
故選:C
點評:本題主要考查函數(shù)的定義域的求解,根據(jù)復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是△ABC的內(nèi)心(三個內(nèi)角平分線交點)、外心(三條邊的中垂線交點)、重心(三條中線交點)、垂心(三個高的交點)之一,且滿足2
AP
BC
=
AC
2
-
AB
2
,則點P一定是△ABC的( 。
A、內(nèi)心B、外心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x-3有零點的區(qū)間是( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
5
(x2-6x+10)在區(qū)間[1,2]上的最大值是( 。
A、0
B、log 
1
5
5
C、log 
1
5
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,若
a9
a8
<-1且其前n項和Sn有最大值,則使得Sn>0的n的最大值為( 。
A、16B、15C、9D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

藝術(shù)節(jié)期間,秘書處派甲,乙,丙,丁四名工作人員分別到A,B,C三個不同的演出場館工作,每個演出場館至少派一人,若要求甲,乙兩人不能到同一演出場館工作,則不同的分派方案有( 。
A、36種B、30種
C、24種D、20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x的絕對值不大于2,則可用不等式表示為( 。
A、|x|>2
B、|x|≥2
C、|x|<2
D、|x|≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax-1,a≠0
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.    
(Ⅲ)若a>0,求函數(shù)f(x)在區(qū)間[0,1]上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為貫徹“激情工作,快樂數(shù)學(xué)”的理念,某學(xué)校在學(xué)習(xí)之余舉行趣味知識有獎競賽,比賽分初賽和決賽兩部分,為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進行,每位選手最多有5次選答題的機會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進入決賽,答錯3題者則被淘汰,已知選手甲答題的正確率為
2
3

(1)求選手甲答題次數(shù)不超過4次可進入決賽的概率;
(2)設(shè)選手甲在初賽中答題的個數(shù)ξ,試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案