(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)), 過點(diǎn)作一斜率為的直線交橢圓于、兩點(diǎn)(其中點(diǎn)在軸上方,點(diǎn)在軸下方) .
(1)求橢圓的方程;
(2)若,求的面積;
(3)設(shè)點(diǎn)為點(diǎn)關(guān)于軸的對稱點(diǎn),判斷與的位置關(guān)系,并說明理由.
(1)(2)(3)與共線,設(shè)出點(diǎn)的坐標(biāo),用向量的坐標(biāo)運(yùn)算即可證明.
【解析】
試題分析:(1)由,得 ……2分
解得a2=2,b2=1,
所以,橢圓方程為. ……4分
(2)設(shè)PQ:y=x-1,
由得3y2+2y-1=0, ……6分
解得: P(),Q(0,-1),
由條件可知點(diǎn),
所以=|FT||y1-y2|=. ……10分
(3) 判斷:與共線. ……11分
設(shè)
則(x1,-y1),=(x2-x1,y2+y1),=(x2-2,y2), ……12分
由得. ……13分
(x2-x1)y2-(x2-2)(y1+y2)=(x2-x1)k(x2-1)-(x2-2)(kx1-k+kx2-k)
=3k(x1+x2)-2kx1x2-4k=3k-2k-4k
=k()=0. ……15分
所以,與共線. ……16分
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求解、直線與橢圓的位置關(guān)系的判定和應(yīng)用以及向量共線的坐標(biāo)運(yùn)算的應(yīng)用,考查學(xué)生的運(yùn)算求解能力和思維的嚴(yán)密性.
點(diǎn)評:高考中圓錐曲線的題目一般難度較大,而且一般運(yùn)算量較大,要仔細(xì)運(yùn)算,更要結(jié)合圖形數(shù)形結(jié)合簡化求解過程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com