【題目】已知函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn);
②若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點(diǎn);
③若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn);
④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點(diǎn);
其中正確說法的序號是(把所有正確說法的序號都填上).

【答案】②④
【解析】解:對于①②,如圖:若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn)①不正確;
若f(a)f(b)>0,則函數(shù)y=f(x)在區(qū)間(a,b)上可能有零點(diǎn);所以②正確;
對于③,若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上沒有零點(diǎn);不滿足零點(diǎn)判定定理,所以錯誤;
對于④若f(a)f(b)<0,則函數(shù)y=f(x)在區(qū)間(a,b)上至少有一個零點(diǎn);滿足零點(diǎn)判定定理,正確;
所以答案是:②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a35a10=-9.

(1){an}的通項公式;

(2){an}的前n項和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=5 + 的定義域為(
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|x≤2且x≠1}
D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;

(2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸的直線與橢圓相交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 底面為菱形,平面,點(diǎn)在棱上.

(Ⅰ)求證:直線平面

(Ⅱ)若平面,求證:

(Ⅲ)是否存在點(diǎn),使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐的三組相對棱(相對的棱是指三棱錐中成異面直線的一組棱)分別相等,且長分別為,其中,則該三棱錐體積的最大值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案