已知函數(shù)f(x)=x2+2x+alnx
(1)若f(x)是區(qū)間(0,1)上單調(diào)函數(shù),求a的取值范圍;
(2)若?t≥1,f(2t-1)≥2f(t)-3,試求a的取值范圍.
【答案】分析:(1)先求出導(dǎo)函數(shù),然后根據(jù)f(x)是區(qū)間(0,1)上單調(diào)函數(shù),可轉(zhuǎn)化成?x(0,1),f'(x)≥0或?x∈(0,1)f'(x)≤0恒成立,將a分離出來(lái),即可求出a的范圍;
(2)先化簡(jiǎn)f(2t-1)≥2f(t)-3得2(t-1)22alnt+aln(2t-1)≥0,令g(t)=2(t-1)2-2alnt+aln(2t-1),討論a與2的大小,利用導(dǎo)數(shù)研究g(t)的最小值恒大于等于0即可求出a的范圍.
解答:解:(1)
∵f(x)在(0,1)上單調(diào)
∴?x(0,1),f'(x)≥0或?x∈(0,1)f'(x)≤0
∴a≥-2(x2+x)或a≤-2(x2+x)
從而a≥0或a≤-4(7分)
(2)f(2t-1)≥2f(t)-3?2(t-1)22alnt+aln(2t-1)≥0①
令g(t)=2(t-1)2-2alnt+aln(2t-1)

當(dāng)a≤2時(shí)
∵t≥1,
∴t-1≥0,2t(t-1)≥2
∴g'(t)≥0對(duì)t>1恒成立,
∴g(t)在[1,+∞)上遞增,
∴g(t)≥g(1)=0,即1式對(duì)t≥1恒成立.
當(dāng)a>2時(shí),
令g'(t)<0且t>1,
解得
于是,上遞減,在上遞增,
從而有,即①式不可能恒成立.
綜上所述a≤2.(16分)
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及不等式恒成立問(wèn)題,是考試中?嫉念}型,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案