【題目】若實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

【答案】A
【解析】解:∵實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,

y=logm3(0<m<1)是減函數(shù),y=logm3(m>1)是增函數(shù),

∴當(dāng)a,b,c均大于1時(shí),a>b>c>1;

當(dāng)a,b,c均小于1時(shí),1>a>b>c>0;

當(dāng)a,b,c中有1個(gè)大于1,兩個(gè)小于1時(shí),c>1>a>b>0;

當(dāng)a,b,c中有1 個(gè)小于1,兩個(gè)大于1時(shí),b>c>1>a>0.

故選:A.

【考點(diǎn)精析】通過靈活運(yùn)用對(duì)數(shù)值大小的比較,掌握幾個(gè)重要的對(duì)數(shù)恒等式:,,;常用對(duì)數(shù):,即;自然對(duì)數(shù):,即(其中…)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)當(dāng)a=1時(shí),求A∩B和A∪B;
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過三個(gè)點(diǎn)A(4,1),B(6,﹣3),C(﹣3,0),則圓C的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=(
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:“函數(shù) 在R上有零點(diǎn)”,命題q:函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),若p∧q為真命題,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率 ,且過點(diǎn)Q
(1)求橢圓C的方程.
(2)橢圓C長軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的動(dòng)點(diǎn),定直線x=4與直線PA,PB分別交于M,N兩點(diǎn),直線PA,PB的斜率分別為k1 , k2①證明
②若E(7,0),過E,M,N三點(diǎn)的圓是否過x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過,求出定點(diǎn)坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域?yàn)锳,值域?yàn)锽,則A∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x﹣3)2+(y﹣4)2=1.
(Ⅰ)若過點(diǎn)C1(﹣1,0)的直線l被圓C2截得的弦長為 ,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動(dòng)的動(dòng)圓,若圓D上任意一點(diǎn)P分別作圓C1的兩條切線PE,PF,切點(diǎn)為E,F(xiàn),求 的取值范圍;
(Ⅲ)若動(dòng)圓C同時(shí)平分圓C1的周長、圓C2的周長,則動(dòng)圓C是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,N為CD1中點(diǎn),M為線段BC1上的動(dòng)點(diǎn),(M不與B,C1重合)有四個(gè)命題:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱錐D﹣MNC的體積有最大值.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案