(文科)長(zhǎng)方體中,,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面;

(Ⅱ) 求證:平面;

(Ⅲ) 求三棱錐的體積。

 

【答案】

(Ⅰ) 根據(jù)線線平行證明線面平行;(Ⅱ)根據(jù)線線垂直證明線面垂直;(Ⅲ)  

【解析】

試題分析:(Ⅰ)依題意:

在平面外.…2分

平面 ……3分

(Ⅱ)連結(jié) 

平面…………4分

又∵上,∴在平面

……5分

 ∴     

中,…6分

同理:中,

  …7分,∴平面……8分

(Ⅲ)∵平面∴所求體積

 …12分

考點(diǎn):本題考查了空間中線面關(guān)系

點(diǎn)評(píng):高考中的立體幾何問(wèn)題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計(jì)算問(wèn)題.對(duì)于平行和垂直問(wèn)題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進(jìn)行靈活的轉(zhuǎn)化.在尋找解題思路時(shí),不妨采用分析法,從要求證的結(jié)論逐步逆推到已知條件.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1中,E為AA1上一點(diǎn),平面B1CE⊥平面BCE,AB=BC=1,AA1=2.
(1)求平面B1CE與平面B1BE所成二面角α的大;(文科只要求求tanα)
(2)求點(diǎn)A到平面B1CE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省高三4月月考數(shù)學(xué)文理合卷試卷(解析版) 題型:解答題

(文科)(本小題滿分12分)長(zhǎng)方體中,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面;

(Ⅱ) 求證:平面;

(Ⅲ) 求三棱錐的體積。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

(文科做)(本題滿分14分)如圖,在長(zhǎng)方體

ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

(1)證明:D1EA1D;

(2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

(3)AE等于何值時(shí),二面角D1ECD的大小為.                      

 

 

 

(理科做)(本題滿分14分)

     如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =,AA1 =M為側(cè)棱CC1上一點(diǎn),AMBA1

   (Ⅰ)求證:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大。

   (Ⅲ)求點(diǎn)C到平面ABM的距離.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006年北京市海淀區(qū)高考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

已知長(zhǎng)方體ABCD-A1B1C1D1中,E為AA1上一點(diǎn),平面B1CE⊥平面BCE,AB=BC=1,AA1=2.
(1)求平面B1CE與平面B1BE所成二面角α的大。唬ㄎ目浦灰笄髏anα)
(2)求點(diǎn)A到平面B1CE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案