求下列函數(shù)的導(dǎo)數(shù):
(1)y=2x3+log2x;
(2)y=
cosx
sinx
+2x
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:分別根據(jù)導(dǎo)數(shù)的運(yùn)算法則,求導(dǎo)即可,
解答: 解:(1)y′=6x2+
1
xln2

(2)y′=
-sin2x-cos2x
sin2x
+2xln2
=-
1
sin2x
+2xln2
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的運(yùn)算,關(guān)鍵是掌握基本導(dǎo)數(shù)公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l的參數(shù)方程為
x=3+tcosα
y=4+tsinα
(t為參數(shù),α為傾斜角),圓C的參數(shù)方程為
x=1+2cosθ
y=-1+2sinθ
(θ為參數(shù)).
(1)若直線l經(jīng)過(guò)圓C的圓心,求直線l的斜率.
(2)若直線l與圓C交于兩個(gè)不同的點(diǎn),求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)的圖象關(guān)于原點(diǎn)對(duì)稱,且x=1時(shí),f(x)取得極小值-
2
3

(1)求a,b,c,d的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+ax-1
(1)求f(x)的增區(qū)間;
(2)若f(x)在(0,+∞)上恒正,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
6
3
,且橢圓C上的點(diǎn)到原點(diǎn)的距離的最大值為
3

(1)求橢圓C的方程;
(2)若動(dòng)點(diǎn)P滿足
OP
=
OM
+3
ON
,其中M、N是橢圓上不同兩點(diǎn),直線OM、ON的斜率之積為-
1
3
,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+sin2x-cos2x.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)用“五點(diǎn)法”畫(huà)出函數(shù)f(x)在一個(gè)周期內(nèi)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)內(nèi)角A,B,C滿足2B=A+C且所對(duì)的邊分別為a,b,c.
(1)求B;
(2)若a=
3
sinA+cosA,求當(dāng)a取最大值時(shí)A,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax+b,(a,b∈R)在x=2處取得極小值-
4
3
,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(2)若
1
3
x3+ax+b≤m2+m+
10
3
在[-4,3]上恒成立,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處取得極值10,則f(-1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案