【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.

(1)求數(shù)列{an},{bn}的通項公式;

(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn對一切n∈N*恒成立,求實數(shù)λ的取值范圍.

【答案】(1), ;(2)

【解析】試題分析:(1)數(shù)列滿足, ,且,可得,解得,利用等差數(shù)列的通項公式可得,可得,化為,利用等比數(shù)列的通項公式可得;(2)設(shè)數(shù)列滿足,利用“錯位相減法”可得數(shù)列的前項和為,再利用數(shù)列的單調(diào)性與分類討論即可得出.

試題解析:(1)∵數(shù)列滿足, ,且,∴,解得,又?jǐn)?shù)列是公差為2的等差數(shù)列,∴,∴,化為,∴數(shù)列是等比數(shù)列,公比為2,∴
(2)設(shè)數(shù)列滿足,數(shù)列的前項和為,∴,∴,∴,不等式,化為: 時, ,∴; 時, ,∴,綜上可得:實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人獨立地對某一技術(shù)難題進行攻關(guān)。甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.

1)求這一技術(shù)難題被攻克的概率;

2)若該技術(shù)難題末被攻克,上級不做任何獎勵;若該技術(shù)難題被攻克,上級會獎勵萬元。獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金萬元;若只有2人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元。設(shè)甲得到的獎金數(shù)為X,求X的分布列和數(shù)學(xué)期望。(本題滿分12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機抽取8次,記錄如下:

(Ⅰ)分別估計甲、乙兩名同學(xué)在培訓(xùn)期間所有測試成績的平均分;

(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績中各選一個成績作為參考,求甲、乙兩人成績都在90分以上的概率;

(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位同學(xué)參加較為合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為A,直線l過點B(1,0)且與x軸不重合,l交圓ACD兩點,過BAC的平行線交AD于點E.

I)證明為定值,并寫出點E的軌跡方程;

II)設(shè)點E的軌跡為曲線C1,直線lC1M,N兩點,過B且與l垂直的直線與圓A交于P,Q兩點,求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點 ,圓 ,過的動直線兩點,線段中點為, 為坐標(biāo)原點。

1)求點的軌跡方程;

2)當(dāng)時,求直線的方程以及面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

(3)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16

1)數(shù)列{an}從哪一項開始小于0;

2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和菱形所在的平面相互垂直,,的中點.

(1)求證:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案