【題目】如圖,已知正方形和矩形所在的平面互相垂直,點(diǎn),中點(diǎn),,.

1)求證:;

2)求證:平面;

3)求二面角的大小.

【答案】1)答案見解析(2)答案見解析(3.

【解析】

1)要證明,只需證明,即可求得答案;

2)要證明平面,只需證,即可求得答案;

3)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,求得平面的法向量和平面的法向量,根據(jù),即可求得答案.

1正方形和矩形所在的平面互相垂直,

平面,

平面,

,

是正方形,

,

,

,

平面,

.

2)連結(jié),如圖:

點(diǎn),的中點(diǎn),

,

四邊形是平行四邊形,

,

不包含于平面,平面,

平面.

3)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,

如圖:

,,,,

,,,

設(shè)平面的法向量,

,

,可得,

平面的法向量,

,

,

二面角的平面角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有長(zhǎng)分別為、的鋼管各3根(每根鋼管的質(zhì)地均勻、粗細(xì)相同且富有不同的編號(hào)),從中隨機(jī)抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.

(I)當(dāng)時(shí),記事件,求;

(II)當(dāng)時(shí),若用表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l過曲線Cyx2的焦點(diǎn)F,并與曲線C交于Ax1y1),Bx2,y2)兩點(diǎn).

1)求證:x1x2=﹣16;

2)曲線C分別在點(diǎn)A,B處的切線(與C只有一個(gè)公共點(diǎn),且C在其一側(cè)的直線)交于點(diǎn)M,求點(diǎn)M的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直三棱柱中,,,為線段的中點(diǎn).

)證明:平面;

)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個(gè)正方體中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個(gè)命題中正確命題的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60)[60,70),[70,80),[80,90),[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;

(3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形的邊長(zhǎng)為2,點(diǎn)的中點(diǎn).以為圓心,為半徑,作弧交于點(diǎn).若為劣弧上的動(dòng)點(diǎn),則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列, 其前項(xiàng)和為,滿足

)求的通項(xiàng)公式;

)記,求數(shù)列的前項(xiàng)和,并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個(gè)年級(jí)各抽取10名志愿者參賽。在規(guī)定時(shí)間內(nèi),他們檢索到的圖書冊(cè)數(shù)的莖葉圖如圖所示,規(guī)定冊(cè)數(shù)不小于20的為優(yōu)秀.

() 從兩個(gè)年級(jí)的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;

() 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案