已知sin(
π
4
-x)=
3
5
,且
17π
12
<x<
4
,則sin2x的值為( 。
A、
7
2
25
B、-
7
2
25
C、
7
25
D、-
7
25
考點:二倍角的正弦
專題:計算題,三角函數(shù)的求值
分析:由sin(
π
4
-x)=
3
5
,可得
2
2
(cosx-sinx)=
3
5
,兩邊平方,即可求出sin2x的值
解答: 解:∵sin(
π
4
-x)=
3
5
,
2
2
(cosx-sinx)=
3
5

1
2
(1-sin2x)=
9
25
,
∴sin2x=
7
25

故選:C.
點評:本題考查二倍角的正弦,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(3x)+8x,則
lim
△x→0
f(1-2△x)-f(1)
△x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且橢圓短軸的兩個三等分點與一個焦點構(gòu)成正三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若以k(k≠0)為斜率的直線l與橢圓E相交于兩個不同的點A,B,且線段AB的垂直平分線與兩坐標軸圍成的三角形的面積為
1
16
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰直角△ABC中,AD是直角邊BC上的中線,BE⊥AD,交AC于E,EF⊥BC,若AB=BC=a,則EF等于( 。
A、
2
5
a
B、
1
2
a
C、
1
3
a
D、
2
3
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c依次為函數(shù)f(x)=2x+x,g(x)=log2x-1,h(x)=2x-log 
1
2
x的零點,則a,b,c的大小關(guān)系為( 。
A、a<b<c
B、a<c<b
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi),已知|
OA
|=1,|
OB
|=
3
,
OA
OB
=0,∠AOC=30°,設(shè)
OC
=m
OA
+n
OB
,(m,n∈R),則
m
n
等于( 。
A、±
1
3
B、±
3
3
C、±
3
D、±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=ax(a>0)上存在兩點M,N關(guān)于直線y=x-2對稱,則a的取值范圍是(  )
A、0<a<
10
3
B、0<a<
8
3
C、0<a<2
D、0<a<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果從數(shù)字1,2,3,4,5中任意抽兩個數(shù)使其和為偶數(shù),則不同選法有( 。
A、2種B、3種C、4種D、5種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點不共線,對平面ABC外的任一點O,下列條件中能確保點M與點A,B,C共面的是(  )
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
6
OA
+
1
3
OB
+
1
2
OC

查看答案和解析>>

同步練習(xí)冊答案