【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書謎”,低于60分鐘的學生稱為“非讀書謎”
(1)求的值并估計全校3000名學生中讀書謎大概有多少?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關(guān)?
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 | ||
合計 |
附:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)人;
(2)列聯(lián)表如下:
非讀書迷 | 讀書迷 | 合計 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合計 | 60 | 40 | 100 |
有99%的把握認為“讀書迷”與性別有關(guān)
【解析】
試題分析:(1)由頻率分布直方圖算出“讀書迷”的頻率,總?cè)藬?shù)乘以頻率即可求出“讀書迷”的人數(shù);
(2)由頻率分布直方圖求出“讀書迷”與“非讀書迷”的人數(shù),再根據(jù)表中數(shù)據(jù)可求出相應(yīng)的男女人數(shù),填入表格即可得到列聯(lián)表,將表中數(shù)據(jù)代入所給公式求出觀察值,由臨界值可得出結(jié)論.
試題解析: (1)由已知可得:(0.01+0.02+0.03+x+0.015)×10=1,可得x=0.025,
因為( 0.025+0.015)×10=0.4,將頻率視為概率,
由此可以估算出全校3000名學生中讀書迷大概有1200人.
(2)完成下面的2×2列聯(lián)表如下
非讀書迷 | 讀書迷 | 合計 | |
男 | 40 | 15 | 55 |
女 | 20 | 25 | 45 |
合計 | 60 | 40 | 100 |
…8分
.
,有99%的把握認為“讀書迷”與性別有關(guān).
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為,動點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求以為直徑且被直線截得的弦長為2的圓的方程;
(Ⅲ)設(shè)是橢圓的右焦點,過點作的垂線與以為直徑的圓交于點,證明:線段的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線, .
(1)當時,直線過與的交點,且它在兩坐標軸上的截距相反,求直線的方程;
(2)若坐標原點到直線的距離為,判斷與的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位學生參加數(shù)學競賽培訓,在培訓期間他們參加的5次預寒成績記錄如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求甲、乙兩人成績的平均數(shù)與方差;
(3)若現(xiàn)要從中選派一人參加數(shù)學競賽,你認為選派哪位學生參加合適,說明理由?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級, 一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面四種說法正確的是( )
①1月至8月空氣合格天數(shù)超過20天的月份有5個
②第二季度與第一季度相比,空氣達標天數(shù)的比重下降了
③8月是空氣質(zhì)量最好的一個月
④6月份的空氣質(zhì)量最差
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若曲線在點處的切線經(jīng)過點,求的值;
(2)若在內(nèi)存在極值,求的取值范圍;
(3)當時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓恰好經(jīng)過橢圓的兩個焦點和兩個頂點.
(1)求橢圓的方程;
(2)經(jīng)過原點的直線 (不與坐標軸重合)交橢圓于兩點, 軸,垂足為,連接并延長交橢圓于,證明:以線段為直徑的圓經(jīng)過點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com