設(shè)=1+++…+(n),
(1)分別求出滿足++…+=g(n)(-1)的并猜想的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明:(1)中猜想所得的g(n)使得等式++…+=g(n)(-1)對于大于1的一切自然數(shù)n都成立。

解:(1)先求,,…… 3分
猜想,…… 5分
(2)用數(shù)學(xué)歸納法證明,當(dāng)是結(jié)論成立……6分
設(shè)時,成立……7分


……11分
所以對任意大于1的自然數(shù)結(jié)論都成立!12分。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,則a1+a3+a5+…+a2n-1=
3n-1
2
3n-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+x+x2)n=a0+a1x+…+a2nx2n,求a2+a4+…+a2n的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(1)若{an}為等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(2)若an=2n-1,數(shù)列{bn}滿足
b1
a1
+
b2
a2
+…+
bn
an
=1-
1
2n
,n∈N+,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)(1+x+x2)n=a0+a1x+…+a2nx2n,求a2+a4+…+a2n的值( 。
A.3nB.3n-2C.
3n-1
2
D.
3n+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)(1+x+x2)n=a0+a1x+a2x2+…+a2nx2n,則a1+a3+a5+…+a2n-1=______.

查看答案和解析>>

同步練習(xí)冊答案