【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到△A1BE的位置,如圖2.
圖1 圖2
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.
【答案】(1) 見解析;(2)
【解析】試題分析:(1)折起后, 根據(jù)線面垂直的判定定理可得平面,即可證明平面;(2)若平面平面,根據(jù)(1)可得 兩兩垂直,以 建立空間坐標系,利用向量垂直數(shù)量積為零,分別求出平面與平面的法向量,根據(jù)空間向量夾角余弦公式可得結(jié)果.
試題解析:(1) 在題圖1中,因為AB=BC=1,AD=2,E是AD的中點,∠BAD= AD∥BC,
所以BE⊥AC,BE∥CD,
即在題圖2中,BE⊥OA1,BE⊥OC,且OA1∩OC=O,
從而BE⊥平面A1OC,
又CD∥BE,
所以CD⊥平面A1OC.
(2)解:因為平面A1BE⊥平面BCDE,
又由(1)知BE⊥OA1,BE⊥OC,
所以∠A1OC為二面角A1BEC的平面角,
所以∠A1OC=.
如圖,以O為原點,建立空間直角坐標系,
因為A1B=A1E=BC=ED=1,
BC∥ED,
所以B
(,0,0),E(- ,0,0),
A1(0,0, ),C(0, ,0),
得=(-, ,0), =(0, ,- ),
= (-,0,0).
設平面A1BC的法向量n1=(x1,y1,z1),
平面A1CD的法向量n2=(x2,y2,z2),平面A1BC與平面A1CD夾角為θ,
則
得
取n1=(1,1,1);
得
取n2=(0,1,1),
從而cos θ=|cos<n1,n2>|= =,
即平面A1BC與平面A1CD夾角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知(,且,)是定義在區(qū)間上的奇函數(shù),
(1)求的值和實數(shù)的值;
(2)判斷函數(shù)在區(qū)間上的單調(diào)性,并說明理由;
(3)若且成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了展示中華漢字的無窮魅力,傳遞傳統(tǒng)文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據(jù)甲、乙兩人近期8次成績畫出莖葉圖,如圖所示,甲的成績中有一個數(shù)的個位數(shù)字模糊,在莖葉圖中用表示.(把頻率當作概率).
(1)假設,現(xiàn)要從甲、乙兩人中選派一人參加比賽,從統(tǒng)計學的角度,你認為派哪位學生參加比較合適?
(2)假設數(shù)字的取值是隨機的,求乙的平均分高于甲的平均分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某校隨機抽取200名學生,獲得了他們一周課外閱讀時間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).
編 號 | 分 組 | 頻 數(shù) |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
續(xù) 表
編 號 | 分 組 | 頻 數(shù) |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合計 | 200 |
(1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12 h的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的200名學生該周課外閱讀時間的平均數(shù)在第幾組.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把單位正方體的六個面分別染上6種顏色,并畫上個數(shù)不同的金雞,各面的顏色與雞的個數(shù)對應如表:
面上所染顏色 | 紅 | 黃 | 藍 | 青 | 紫 | 綠 |
該面上的金雞個數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
取同樣的4個上述的單位正方體拼成一個如圖所示的水平放置的長方體.則這個長方體的下底面總計畫有______個金雞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測算,自行車廠的總收益(單位:元)滿足分段函數(shù),其中 是新樣式單車的月產(chǎn)量(單位:件),利潤總收益總成本.
(1)試將自行車廠的利潤元表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為多少件時自行車廠的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1) 求實數(shù)的值;
(2) 判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;
(3) 若方程在內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人各有個材質(zhì)、大小、形狀完全相同的小球,甲的小球上面標有五個數(shù)字,乙的小球上面標有五個數(shù)字.把各自的小球放入兩個不透明的口袋中,兩人同時從各自的口袋中隨機摸出個小球.規(guī)定:若甲摸出的小球上的數(shù)字是乙摸出的小球上的數(shù)字的整數(shù)倍,則甲獲勝,否則乙獲勝.
(1)寫出基本事件空間;
(2)你認為“規(guī)定”對甲、乙二人公平嗎?說出你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com