已知I為實數(shù)集,P={x|x2-2x<0},Q={y|y=2x+1,x∈R},則P∩(∁IQ)=( 。
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|x<1}
D、∅
考點:交、并、補集的混合運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題可以先對集合化簡,再利用補集定義求出相應(yīng)的補集,最后求出P∩(∁IQ),得到本題結(jié)論.
解答: 解:∵Q={y|y=2x+1,x∈R},
∴y=2x+1>1,
∴Q={y|y>1}.
∵I為實數(shù)集,
∴∁IQ={y|y≤1}.
∵P={x|x2-2x<0},
∴P={x|0<x<2}.
∴P∩(∁IQ)={x|0<x≤1}.
故答案為:B.
點評:本題考查了集合的補集運算、集合的交集運算,本題難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的最小值1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[3a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[-1,3]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
21-x,x≤1
1-log2x,x>1
,則f[f(4)]=( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,若
S4
S2
=4,則
S8
S4
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與函數(shù)y=x相等的函數(shù)是( 。
A、y=(
x
2
B、y=
3x3
C、y=
x2
D、y=
x2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
px2+2
q-3x
是奇函數(shù),且f(2)=-
5
3
.則函數(shù)f(x)的解析式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序框圖中,某班50名學(xué)生,在一次數(shù)學(xué)考試中,an表示學(xué)號為n的學(xué)生的成績,則( 。
A、P表示成績不高于60分的人數(shù)
B、Q表示成績低于80分的人數(shù)
C、R表示成績高于80分的人數(shù)
D、Q表示成績不低于60分,且低于80分人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a是R中的元素,但不是Q中的元素,則a可以是 (  )
A、3.14
B、log48
C、-5
D、
9
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(-3,2).
(1)求|
a
+
b
|和|
a
-
b
|;
(2)k為何值時,向量k
a
+
b
a
-3
b
垂直;
(3)k為何值時,向量k
a
+
b
a
-3
b
平行.

查看答案和解析>>

同步練習(xí)冊答案