圖△ABC和△BCD都是邊長為2的正三角形,且二面角A-BC-D的大小為60°,則AD的長為( �。�
分析:取BC的中點O,連接OA,OD,確定∠AOD為二面角A-BC-D的平面角,即∠AOD=60°,從而可得結論.
解答:解:取BC的中點O,連接OA,OD
∵△ABC和△BCD都是邊長為2的正三角形
∴AO⊥BC,DO⊥BC,AO=DO=
3

∴∠AOD為二面角A-BC-D的平面角,即∠AOD=60°
∵AO=DO=
3

∴AD=
3

故選C.
點評:本題考查面面角,考查學生的計算能力,確定面面角是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC和△BCD所在平面互相垂直,∠ABC=∠BCD=90°,AB=a,BC=b,CD=c,且a2+b2+c2=1,則三棱錐A-BCD的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

翰林匯如圖,△ABC和△DBC所在平面互相垂直 ,AB=BC=BD,∠CBA=∠DBC=120o,                                  求               

    (1)AD與平面BCD的成角;

(2)AD與BC的成角;

(3)二面角A-BD-C的正切值.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�