【題目】已知函數(shù)f(x)=cos2x的圖象向左平移 個(gè)單位后得到函數(shù)g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足 ,則φ的值為(
A.
B.
C.
D.

【答案】C
【解析】解:函數(shù)f(x)=cos2x的圖象向左平移 個(gè)單位后得到函數(shù)g(x)的圖象,

則g(x)=cos2(x+φ)=cos(2x+2φ),

由|f(x1)﹣g(x2)|=2,得|cos2x1﹣cos(2x2+2φ)|=2,

則必有cos2x1=1且cos(2x2+2φ)=﹣1,或cos2x1=﹣1,cos(2x2+2φ)=1,

根據(jù)對(duì)稱性不妨設(shè)cos2x1=1且cos(2x2+2φ)=﹣1,

則2x1=2k1π,2x2+2φ=2k2π+π,

即x1=k1π,x2= ﹣φ+k2π,

則x1﹣x2=(k1﹣k2)π+φ﹣ ,

∵0<φ< , ,

∴|x1﹣x2|=|(k1﹣k2)π+φ﹣ |=|(k2﹣k1)π+ ﹣φ|,

則當(dāng)k1=k2時(shí), ﹣φ= ,即φ= ,

故選:C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的a值為(
A.﹣3
B.
C.﹣
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+cos2x.
(1)當(dāng)x∈[0, ]時(shí),求f(x)的取值范圍;
(2)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合M;
(2)設(shè)不等式 的解集為N,若x∈N是x∈M的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當(dāng)a= 時(shí),求不等式f(x)<3的解集;
(Ⅱ)當(dāng)0<x<2時(shí),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為橢圓 =1上的動(dòng)點(diǎn),EF為圓N:x2+(y﹣1)2=1的任一直徑,求 最大值和最小值是(
A.16,12﹣4
B.17,13﹣4
C.19,12﹣4
D.20,13﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=cos(x+ )的圖象,只需將函數(shù)y=sinx的圖象(
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,C> ,若函數(shù)y=f(x)在[0,1]上為單調(diào)遞減函數(shù),則下列命題正確的是(
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

同步練習(xí)冊(cè)答案