【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以坐標原點為極點,軸的非負半軸為極軸,取相同的長度單位建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)若曲線上的點到直線的最大距離為6,求實數(shù)的值.

【答案】(Ⅰ)直線的普通方程為.曲線的直角坐標方程為;(Ⅱ).

【解析】分析:()消去參數(shù)m可得直線的普通方程為.極坐標方程化為直角坐標方程可得曲線的直角坐標方程為

()由題意結(jié)合直線與圓的位置關(guān)系整理計算可得

詳解:(),消去 ,,

所以直線的普通方程為.

,,

代入,,

所以曲線的直角坐標方程為

()曲線:的圓心為,半徑為,

圓心到直線 的距離為,

若曲線上的點到直線的最大距離為6,

,,解得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,給出下列命題:

①若數(shù)列既是等差數(shù)列,又是等比數(shù)列,則數(shù)列是常數(shù)列.

②若等差數(shù)列滿足,則數(shù)列是常數(shù)列.

③若等比數(shù)列滿足,則數(shù)列是常數(shù)列.

④若各項為正數(shù)的等比數(shù)列滿足,則數(shù)列是常數(shù)列.

其中正確的命題個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面,四邊形是正方形,

(Ⅰ)證明:平面平面;

(Ⅱ)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率e= , 原點到過A(a,0),B(0,﹣b)兩點的直線的距離是
(1)求橢圓的方程;
(2)已知直線y=kx+1(k≠0)交橢圓于不同的兩點E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,…,,, …,,…有如下運算和結(jié)論:①;②數(shù)列,,…是等比數(shù)列;③數(shù)列,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電信公司從所在地的1000名使用4G手機用戶中,隨機抽取了20名,對其收集每日使用流量(單位:M)進行統(tǒng)計,得到如下數(shù)據(jù):

流量x

0≤x<5

5≤x<10

10≤x<15

15≤x<20

20≤x<25

x≥25

人數(shù)

1

6

6

5

2

0

(1)估計這20名4G手機用戶每日使用流量(單位:M)的平均值;
(2)估計此地1000名使用4G手機用戶中每日使用流量不少于10M用戶數(shù);
(3)在15≤x<20和20≤x<25兩組用戶中,隨機抽取兩人作進一步問卷調(diào)查,求所抽取的兩人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)討論的單調(diào)性;

(2)若有兩個極值點,記過點的直線的斜率為,問:是否存在,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

(Ⅰ)求分數(shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(Ⅲ)若規(guī)定:75(包含75分)分以上為良好,90分(包含90分)以上為優(yōu)秀,要從分數(shù)在良好以上的試卷中任取兩份分析學(xué)生失分情況,設(shè)在抽取的試卷中,分數(shù)為優(yōu)秀的試卷份數(shù)為X,求X的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案