三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,且長(zhǎng)度分別為3、4、5,則三棱錐P-ABC外接球的表面積是________.

50π
分析:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖,則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.算出長(zhǎng)方體的對(duì)角線(xiàn)即為球直徑,結(jié)合球的表面積公式,可算出三棱錐P-ABC外接球的表面積.
解答:以PA、PB、PC為過(guò)同一頂點(diǎn)的三條棱,作長(zhǎng)方體如圖
則長(zhǎng)方體的外接球同時(shí)也是三棱錐P-ABC外接球.
∵長(zhǎng)方體的對(duì)角線(xiàn)長(zhǎng)為==5
∴球直徑為5,半徑R=
因此,三棱錐P-ABC外接球的表面積是4πR2=4π×(2=50π
故答案為:50π
點(diǎn)評(píng):本題給出三棱錐的三條側(cè)棱兩兩垂直,求它的外接球的表面積,著重考查了長(zhǎng)方體對(duì)角線(xiàn)公式和球的表面積計(jì)算等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)三棱錐P-ABC的頂點(diǎn)P在平面ABC上的射影是H,給出以下命題:
①若PA,PB,PC兩兩互相垂直,則H是△ABC的垂心
②若∠ABC=90°,H是斜邊AC上的中點(diǎn),則PA=PB=PC
③若PA=PB=PC,則H是△ABC的外心
④若P到△ABC的三邊的距離相等,則H為△ABC的內(nèi)心
其中正確命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩垂直,PA=1,PB=2,PC=3,且這個(gè)三棱錐的頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球面的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐P-ABC中,給出下列四個(gè)命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線(xiàn)的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④三棱錐P-ABC的各棱長(zhǎng)均為1,則該三棱錐在任意一個(gè)平面內(nèi)的射影的面積都不大于
1
2
;
⑤如果三棱錐P-ABC的四個(gè)頂點(diǎn)是半徑為1的球的內(nèi)接正四面體的頂點(diǎn),則P與A兩點(diǎn)間的球面距離為π-arccos
1
3

其中正確命題的序號(hào)是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•江西模擬)三棱錐P-ABC的高|PO|=2
2
,底面邊長(zhǎng)分別為3,4,5,Q點(diǎn)在底邊上,且斜高PQ的數(shù)值為3,這樣的Q點(diǎn)最多有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在三棱錐P-ABC中,給出下列四個(gè)命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線(xiàn)的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④三棱錐P-ABC的各棱長(zhǎng)均為1,則該三棱錐在任意一個(gè)平面內(nèi)的射影的面積都不大于
1
2
;
⑤如果三棱錐P-ABC的四個(gè)頂點(diǎn)是半徑為1的球的內(nèi)接正四面體的頂點(diǎn),則P與A兩點(diǎn)間的球面距離為π-arccos
1
3

其中正確命題的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案