如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點的中點.
(1) 證明:平面平面
(2) 求平面與平面所成銳二面角的余弦值.
(1)詳見解析;(2)

試題分析:本小題通過立體幾何的相關(guān)知識,具體涉及到直線與直線垂直的判斷、線面的平行關(guān)系的判斷以及二面角的求法等有關(guān)知識,考查考生的空間想象能力、推理論證能力,對學(xué)生的數(shù)形結(jié)合思想的考查也有涉及,本題是一道立體幾何部分的綜合題,屬于中檔難度試題. (1)借助幾何體的性質(zhì),得到,借助線面平行的判定定理得到線面平行,進而利用面面平行的判定定理證明平面平面;(2)利用空間向量的思路,建立坐標系,明確各點坐標,求解兩個半平面的法向量,進而利用向量的夾角公式求解二面角的平面角.
試題解析:(1) 證明:,
平行且等于,即四邊形為平行四邊形,所以.
              (6分)
(2) 以為原點,方向為軸,以平面內(nèi)過點且垂直于方向為軸以方向為軸,建立如圖所示坐標系.

,
,,
,
可知
,
可知
,
因此平面與平面所成銳二面角的余弦值為.                    (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,面,底面是直角梯形,側(cè)面是等腰直角三角形.且,,

(1)判斷的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點是線段上一點,當(dāng)//平面時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是直角梯形,,是兩個邊長為的正三角形,,的中點,的中點.

(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知長方體中,底面為正方形,,,,點在棱上,且

(Ⅰ)試在棱上確定一點,使得直線平面,并證明;
(Ⅱ)若動點在底面內(nèi),且,請說明點的軌跡,并探求長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點,現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在下列條件下,可判斷平面與平面平行的是(     )
A.α、β都垂直于平面γ
B.α內(nèi)不共線的三個點到β的距離相等
C.l,m是α內(nèi)兩條直線且l∥β,m∥β
D.l,m是異面直線,且l∥α,m∥α,l∥β,m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線和平面, 則下列命題正確的是
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是兩條不同的直線,、是兩個不同的平面,則下面命題中正確的是(   )
A.,
B.
C.
D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點P、Q、R、S分別在正方體的四條棱上,并且是所在棱的中點,則直線PQ與RS是異面直線的一個圖是 ( )

查看答案和解析>>

同步練習(xí)冊答案