有一底面半徑為1,高為2的圓柱,點O為這個圓柱底面圓的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為( )

A. B. C. D.

 

B

【解析】設(shè)點P到點O的距離小于1的概率為P1,由幾何概型,則P1,故點P到點O的距離大于1的概率P1.故選B.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練4練習卷(解析版) 題型:填空題

已知一個正方體的所有頂點在一個球面上.若球的體積為π,則正方體的棱長為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練2練習卷(解析版) 題型:選擇題

ABC中,角A,B,C所對邊的長分別為a,b,c.b2c2a2bc,則sin(BC)( )

A.- B. C.- D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練1練習卷(解析版) 題型:選擇題

已知四棱錐PABCD,底面ABCD是邊長為2的菱形,BAD60°PAPD2,平面PAD平面ABCD,則它的正視圖的面積為( )

A. B. C. D3

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題6第2課時練習卷(解析版) 題型:填空題

某項游戲活動的獎勵分成一、二、三等獎且相應(yīng)獲獎概率是以a1為首項,公比為2的等比數(shù)列,相應(yīng)資金是以700元為首項,公差為-140元的等差數(shù)列,則參與該游戲獲得資金的期望為________元.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題6第1課時練習卷(解析版) 題型:解答題

某中學高三年級從甲、乙兩個班級各選出七名學生參加數(shù)學競賽,他們?nèi)〉玫某煽?/span>(滿分100)的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83.

(1)xy的值;

(2)計算甲班七名學生成績的方差.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第3課時練習卷(解析版) 題型:解答題

設(shè)點P是圓x2y24上任意一點,由點Px軸作垂線PP0,垂足為P0,且.

(1)求點M的軌跡C的方程;

(2)設(shè)直線lykxm(m≠0)(1)中的軌跡C交于不同的兩點A,B.

若直線OAAB,OB的斜率成等比數(shù)列,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第1課時練習卷(解析版) 題型:解答題

已知兩直線l1axby40,l2(a1)xyb0.求分別滿足下列條件的a,b的值.

(1)直線l1過點(3,-1),并且直線l1l2垂直;

(2)直線l1與直線l2平行,并且坐標原點到l1,l2的距離相等.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第3課時練習卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且Sn2an1;數(shù)列{bn}滿足bn1bnbnbn1(n≥2,nN*)b11.

(1)求數(shù)列{an},{bn}的通項公式;

(2)求數(shù)列的前n項和Tn.

 

查看答案和解析>>

同步練習冊答案