【題目】下列“若p,則q”形式的命題中,哪些命題中的q是p的必要條件?
(1)若四邊形為平行四邊形,則這個四邊形的兩組對角分別相等;
(2)若兩個三角形相似,則這兩個三角形的三邊成比例;
(3)若四邊形的對角線互相垂直,則這個四邊形是菱形;
(4)若,則;
(5)若,則;
(6)若為無理數(shù),則x,y為無理數(shù).
【答案】(1)q是p的必要條件;(2)q是p的必要條件;(3)q不是p的必要條件;(4)q是p的必要條件;(5)q不是p的必要條件;(6)q不是p的必要條件
【解析】
根據(jù)所給命題,判斷出能否得到,從而得到q是否是p的必要條件,得到答案.
(1)這是平行四邊形的一條性質定理,,所以,q是p的必要條件.
(2)這是三角形相似的一條性質定理,,所以,q是p的必要條件.
(3)如圖,四邊形的對角線互相垂直,但它不是菱形,,所以,q不是p的必要條件.
(4)根據(jù),兩邊平方,得到,,所以,q是p的必要條件.
(5)由于,但,,所以,q不是p的必要條件.
(6)由于為無理數(shù),但1,不全是無理數(shù),,所以,q不是p的必要條件.
科目:高中數(shù)學 來源: 題型:
【題目】在九章算術中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬如圖,已知四棱錐為陽馬,且,底面若E是線段AB上的點含端點,設SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,則
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設,農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設前后農(nóng)村的經(jīng)濟收入構成比例.得到如下餅圖:
則下面結論中不正確的是
A. 新農(nóng)村建設后,種植收入減少
B. 新農(nóng)村建設后,其他收入增加了一倍以上
C. 新農(nóng)村建設后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數(shù), 表示這個個分店的年收入之和.
(個) | 2 | 3 | 4 | 5 | 6 |
(百萬元) | 2.5 | 3 | 4 | 4.5 | 6 |
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合與的關系,求關于的線性回歸方程;
(2)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區(qū)開設多少個分時,才能使區(qū)平均每個分店的年利潤最大?
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,側面底面,為等腰直角三角形,,為 直角梯形,.
(1)若為的中點,上一點滿足,求證:平面;
(2)若,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在軸上,且其焦點和短軸端點都在圓上.
(1)求橢圓的標準方程;
(2)點是圓上一點,過點作圓的切線交橢圓于,兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)如圖,在五面體ABCDEF中,四邊形EDCF是正方形,.
(1)證明:;
(2)已知四邊形ABCD是等腰梯形,且,求五面體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某實驗室一天的溫度(單位:)隨時間(單位:)的變化近似滿足函數(shù)關系:,.
(1)求實驗室這一天的最高溫度;
(2)若要求實驗室溫度不高于,則在哪段時間實驗室需要降溫?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com