如圖,在等腰直角△OPQ中,∠POQ=90°,OP=2,點(diǎn)M在線段PQ上.
(1)若OM=,求PM的長;
(2)若點(diǎn)N在線段MQ上,且∠MON=30°,問:當(dāng)∠POM取何值時,△OMN的面積最小?并求出面積的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a、b、c分別是角A、B、C的對邊,△ABC的周長為+2,且sinA+sinB=sinC.
(1)求邊c的長;
(2)若△ABC的面積為sinC,求角C的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a、b、c分別是角A、B、C所對的邊,且a=c+bcosC.
(1)求角B的大小;
(2)若S△ABC=,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設(shè).
(1)試用表示的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c.已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量m=,n=.
(1)若m·n=1,求cos 的值;
(2)記f(x)=m·n,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cos B=bcos C,求函數(shù)f(A)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com