垂直于正方形所在的平面,,異面直線、所成的角的余弦為

(1)求的長(zhǎng);

(2)在平面內(nèi)求一點(diǎn)(指出其位置),使

(1)2(2)F是AD中點(diǎn)


解析:

(1)以DA、DC、DP所在直線分別為建立空間直角坐標(biāo)系

(2)

    

    

     又

     即F是AD中點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•朝陽(yáng)區(qū)一模)如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點(diǎn),過(guò)AE、AF的平面交PC于點(diǎn)H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AF∥EH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市高三起點(diǎn)考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分12分)

   如右圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),AE=3,圓O的直徑為9。

   (1)求證:平面ABCD平在ADE;

   (2)求二面角D—BC—E的平面角的正切值;

                                

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:朝陽(yáng)區(qū)一模 題型:解答題

如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點(diǎn),過(guò)AE、AF的平面交PC于點(diǎn)H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AFEH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點(diǎn),過(guò)AE、AF的平面交PC于點(diǎn)H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AF∥EH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案